

ANALYSIS OF JEE ADVANCED 2025 - MATHEMATICS PAPER-1

Topics		Easy	Medium	Difficult	Total	Percentage	
Calculus(XII)	XII Class	0	4	2	6	37.50%	
Trigonometry	XI Class	0	0	0	0	0.00%	
Algebra (XII)	XII Class	0	0	1	1	6.25%	
Algebra (XI)	XI Class	1	3	0	4	25.00%	
Coordinate Geometry	XI Class	0	0	0	0	0.00%	
Probability (XII)	XII Class	0	1	0	1	6.25%	
Probability (XI)	XI Class	0	0	0	0	0.00%	
Reasoning	XI Class	0	0	0	0	0.00%	
3-D (XII)	XII Class	0	1	0	1	6.25%	
Vectors	XII Class	1	0	1	2	12.50%	
Calculus(XI)	XI Class	0	0	0	0	0.00%	
Statistics (XI)	XI Class	0	1	0	1	6.25%	
Total		2	10	4	16	100%	

XII syllabus

XI syllabus

Percentage Portion asked from Syllabus of Class XI & XII

SECTION 1 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme: *Full Marks* : +3 If ONLY the correct option is chosen; *Zero Marks* : 0 If none of the options is chosen (i.e. the question is unanswered); *Negative Marks* : -1 In all other cases.

Q.1 Let \mathbb{R} denote the set of all real numbers. Let $a_i, b_i \in \mathbb{R}$ for $i \in \{1, 2, 3\}$. Define the functions $f: \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$, and $h: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = a_1 + 10x + a_2x^2 + a_3x^3 + x^4,$$

$$g(x) = b_1 + 3x + b_2x^2 + b_3x^3 + x^4,$$

$$h(x) = f(x+1) - g(x+2).$$

If $f(x) \neq g(x)$ for every $x \in \mathbb{R}$, then the coefficient of x^3 in h(x) is

(A)	8
(B)	2
(C)	-4
(D)	-6

Q.2

Three students S_1 , S_2 , and S_3 are given a problem to solve. Consider the following events:

- *U*: At least one of S_1 , S_2 , and S_3 can solve the problem,
- *V*: S_1 can solve the problem, given that neither S_2 nor S_3 can solve the problem,
- W: S_2 can solve the problem and S_3 cannot solve the problem,

T: S_3 can solve the problem.

For any event E, let P(E) denote the probability of E. If

$$P(U) = \frac{1}{2}$$
, $P(V) = \frac{1}{10}$, and $P(W) = \frac{1}{12}$,

then P(T) is equal to

(A)	$\frac{13}{36}$	(B)	$\frac{1}{3}$	(C)	$\frac{19}{60}$	(D)	$\frac{1}{4}$
	50		5		00		Т

$$f(x) = \begin{cases} 2 - 2x^2 - x^2 \sin \frac{1}{x} & \text{if } x \neq 0, \\ 2 & \text{if } x = 0. \end{cases}$$

(A)	The function f is NOT differentiable at $x = 0$
(B)	There is a positive real number δ , such that f is a decreasing function on the interval $(0, \delta)$
(C)	For any positive real number δ , the function f is NOT an increasing function on the interval $(-\delta, 0)$
(D)	x = 0 is a point of local minima of f

Q.4 Consider the matrix

$$P = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$
Let the transpose of a matrix X be denoted by X^T . Then the number of 3×3 invertible matrices Q with integer entries, such that

$$Q^{-1} = Q^T \text{ and } PQ = QP,$$
is
(A) 32 (B) 8 (C) 16 (D) 24

- This section contains **THREE (03)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

<i>Full Marks</i> : +4 ONLY if (all) the correct option(s) is(are) chosen;								
<i>Partial Marks</i> : +3 If all the four options are correct but ONLY three options are chosen;								
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;								
<i>Partial Marks</i> : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;								
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);								
Negative Marks: -2 In all other cases.								
For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct								
answers, then								
choosing ONLY (A), (B) and (D) will get +4 marks;								
choosing ONLY (A) and (B) will get +2 marks;								
choosing ONLY (A) and (D) will get +2 marks;								
choosing ONLY (B) and (D) will get +2 marks;								
choosing ONLY (A) will get +1 mark;								
choosing ONLY (B) will get +1 mark;								
choosing ONLY (D) will get +1 mark;								
choosing no option (i.e. the question is unanswered) will get 0 marks; and								
choosing any other combination of options will get -2 marks.								

Q.5 Let L_1 be the line of intersection of the planes given by the equations

$$2x + 3y + z = 4$$
 and $x + 2y + z = 5$.

Let L_2 be the line passing through the point P(2, -1, 3) and parallel to L_1 . Let M denote the plane given by the equation

$$2x + y - 2z = 6$$

Suppose that the line L_2 meets the plane M at the point Q. Let R be the foot of the perpendicular drawn from P to the plane M.

(A)	The length of the line segment PQ is $9\sqrt{3}$
(B)	The length of the line segment QR is 15
(C)	The area of $\triangle PQR$ is $\frac{3}{2}\sqrt{234}$
(D)	The acute angle between the line segments PQ and PR is $\cos^{-1}\left(\frac{1}{2\sqrt{3}}\right)$

Q.6 Let \mathbb{N} denote the set of all natural numbers, and \mathbb{Z} denote the set of all integers. Consider the functions $f: \mathbb{N} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{N}$ defined by

$$f(n) = \begin{cases} (n+1)/2 & \text{if } n \text{ is odd ,} \\ (4-n)/2 & \text{if } n \text{ is even ,} \end{cases}$$

and

$$g(n) = \begin{cases} 3+2n & \text{if } n \ge 0 \ , \\ -2n & \text{if } n < 0 \ . \end{cases}$$

Define $(g \circ f)(n) = g(f(n))$ for all $n \in \mathbb{N}$, and $(f \circ g)(n) = f(g(n))$ for all $n \in \mathbb{Z}$.

Then which of the following statements is (are) TRUE?

(A)	$g \circ f$ is NOT one-one and $g \circ f$ is NOT onto
(B)	$f \circ g$ is NOT one-one but $f \circ g$ is onto
(C)	g is one-one and g is onto
(D)	f is NOT one-one but f is onto

Q.7 Let \mathbb{R} denote the set of all real numbers. Let $z_1 = 1 + 2i$ and $z_2 = 3i$ be two complex numbers, where $i = \sqrt{-1}$. Let

$$S = \{ (x, y) \in \mathbb{R} \times \mathbb{R} : |x + iy - z_1| = 2|x + iy - z_2| \}.$$

(A)	S is a circle with centre $\left(-\frac{1}{3}, \frac{10}{3}\right)$
(B)	S is a circle with centre $\left(\frac{1}{3}, \frac{8}{3}\right)$
(C)	S is a circle with radius $\frac{\sqrt{2}}{3}$
(D)	S is a circle with radius $\frac{2\sqrt{2}}{3}$

is

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a **NUMERICAL VALUE.**
- For each question, enter the correct numerical value of the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated according to the following marking scheme:
 Full Marks : +4 If ONLY the correct numerical value is entered in the designated place;
 Zero Marks : 0 In all other cases.

Q.8 Let the set of all relations *R* on the set $\{a, b, c, d, e, f\}$, such that *R* is reflexive and symmetric, and *R* contains exactly 10 elements, be denoted by S.

Then the number of elements in S is

Q.9 For any two points *M* and *N* in the *XY*-plane, let \overline{MN} denote the vector from *M* to *N*, and $\vec{0}$ denote the zero vector. Let *P*, *Q* and *R* be three distinct points in the *XY*-plane. Let *S* be a point inside the triangle ΔPQR such that

$$\overrightarrow{SP}$$
 + 5 \overrightarrow{SQ} + 6 \overrightarrow{SR} = $\overrightarrow{0}$.

Let E and F be the mid-points of the sides PR and QR, respectively. Then the value of

length of the line segment *EF* length of the line segment *ES*

Q.10 Let S be the set of all seven-digit numbers that can be formed using the digits 0, 1 and 2. For example, 2210222 is in S, but 0210222 is NOT in S.
Then the number of elements x in S such that at least one of the digits 0 and 1 appears exactly twice in x, is equal to ______.

Q.11 Let α and β be the real numbers such that

$$\lim_{x \to 0} \frac{1}{x^3} \left(\frac{\alpha}{2} \int_0^x \frac{1}{1 - t^2} dt + \beta x \cos x \right) = 2.$$

Then the value of $\alpha + \beta$ is _____.

Q.12 Let \mathbb{R} denote the set of all real numbers. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(x) > 0 for all $x \in \mathbb{R}$, and f(x + y) = f(x)f(y) for all $x, y \in \mathbb{R}$.

Let the real numbers $a_1, a_2, ..., a_{50}$ be in an arithmetic progression. If $f(a_{31}) = 64f(a_{25})$, and

$$\sum_{i=1}^{50} f(a_i) = 3(2^{25} + 1),$$

 $\sum_{i=6}^{30} f(a_i)$

then the value of

is

Q.13 For all x > 0, let $y_1(x)$, $y_2(x)$, and $y_3(x)$ be the functions satisfying

.

$$\frac{dy_1}{dx} - (\sin x)^2 y_1 = 0, \quad y_1(1) = 5,$$

$$\frac{dy_2}{dx} - (\cos x)^2 y_2 = 0, \quad y_2(1) = \frac{1}{3},$$

$$\frac{dy_3}{dx} - \left(\frac{2-x^3}{x^3}\right) y_3 = 0, \quad y_3(1) = \frac{3}{5e},$$

respectively. Then

$$\lim_{x \to 0^+} \frac{y_1(x)y_2(x)y_3(x) + 2x}{e^{3x}\sin x}$$

is equal to _

SECTION 4 (Maximum Marks: 12)

- This section contains **THREE (03)** Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- **FOUR** options are given in each Multiple Choice Question based on **List-I** and **List-II** and **ONLY ONE** of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme: *Full Marks* : +4 ONLY if the option corresponding to the correct combination is chosen; *Zero Marks* : 0 If none of the options is chosen (i.e. the question is unanswered); *Negative Marks* : -1 In all other cases.
- Q.14 Consider the following frequency distribution:

Value	4	5	8	9	6	12	11
Frequency	5	f_1	f_2	2	1	1	3

Suppose that the sum of the frequencies is 19 and the median of this frequency distribution is 6.

For the given frequency distribution, let α denote the mean deviation about the mean, β denote the mean deviation about the median, and σ^2 denote the variance.

Match each entry in List-I to the correct entry in List-II and choose the correct option.

List-I	List-II
(P) $7f_1 + 9f_2$ is equal to	(1) 146
(Q) 19α is equal to	(2) 47
(R) 19 β is equal to	(3) 48
(K) $19\pi^2$ is equal to	(4) 145
	(5) 55

(A)	$(\mathbf{P}) \longrightarrow (5)$	$(Q) \rightarrow (3)$	$(R) \rightarrow (2)$	$(S) \longrightarrow (4)$
(B)	$(\mathbf{P}) \longrightarrow (5)$	$(\mathbf{Q}) \longrightarrow (2)$	$(\mathbf{R}) \longrightarrow (3)$	$(\mathbf{S}) \longrightarrow (1)$
(C)	$(\mathbf{P}) \longrightarrow (5)$	$(Q) \rightarrow (3)$	$(\mathbf{R}) \longrightarrow (2)$	$(\mathbf{S}) \longrightarrow (1)$
(D)	$(\mathbf{P}) \longrightarrow (3)$	$(\mathbf{Q}) \rightarrow (2)$	$(\mathbf{R}) \longrightarrow (5)$	$(S) \longrightarrow (4)$

Q.15	Let \mathbb{R} denote the set of all real numbers. For a real number <i>x</i> , let $[x]$ denote the greatest integer less than or equal to <i>x</i> . Let <i>n</i> denote a natural number.				
	Match each entry in List-I to the correct entry in L	List-II and choose the correct option.			
	List-I	List-II			
	(P) The minimum value of <i>n</i> for which the function $f(x) = \left[\frac{10x^3 - 45x^2 + 60x + 35}{n}\right]$ is continuous on the interval [1, 2], is	(1) 8			
	(Q) The minimum value of <i>n</i> for which $g(x) = (2n^2 - 13n - 15)(x^3 + 3x),$ $x \in \mathbb{R}$, is an increasing function on \mathbb{R} , is	(2) 9			
	(R) The smallest natural number <i>n</i> which is greater than 5, such that $x = 3$ is a point of local minima of $h(x) = (x^2 - 9)^n (x^2 + 2x + 3),$ is	(3) 5			
	(S) Number of $x_0 \in \mathbb{R}$ such that $l(x) = \sum_{k=1}^{4} \left(\sin x - k + \cos\left x - k + \frac{1}{2}\right \right),$	(4) 6			
_	$x \in \mathbb{R}$, is NOT differentiable at x_0 , is	(5) 10			

(A)	$(\mathbf{P}) \longrightarrow (1)$	$(Q) \rightarrow (3)$	$(\mathbf{R}) \longrightarrow (2)$	$(S) \rightarrow (5)$
(B)	$(\mathbf{P}) \longrightarrow (2)$	$(\mathbf{Q}) \rightarrow (1)$	$(\mathbf{R}) \longrightarrow (4)$	$(S) \to (3)$
(C)	$(\mathbf{P}) \longrightarrow (5)$	$(\mathbf{Q}) \rightarrow (1)$	$(\mathbf{R}) \longrightarrow (4)$	$(S) \longrightarrow (3)$
(D)	$(\mathbf{P}) \longrightarrow (2)$	$(Q) \rightarrow (3)$	$(\mathbf{R}) \rightarrow (1)$	$(S) \rightarrow (5)$

(D)

Q.16	Let $\vec{w} = \hat{\iota} + \hat{j} - 2\hat{k}$, and \vec{u} and \vec{v} be two vert	ctors, such that $\vec{u} \times \vec{v} = \vec{w}$ and $\vec{v} \times \vec{w} = \vec{u}$. Let
	α, β, γ , and t be real numbers such that	
	$\vec{u} = \alpha \hat{\imath} + \beta \hat{\jmath} + \gamma \hat{k}, -t \alpha + \beta + \gamma = 0, \alpha$	$\alpha - t \beta + \gamma = 0$, and $\alpha + \beta - t \gamma = 0$.
	Match each entry in List-I to the correct ent	ry in List-II and choose the correct option.
	List-I	List-II
	(P) $ \vec{v} ^2$ is equal to	(1) 0
	(Q) If $\alpha = \sqrt{3}$, then γ^2 is equal to	(2) 1
		(3) 2
	(R) If $\alpha = \sqrt{3}$, then $(\beta + \gamma)^{\alpha}$ is equal to	(4) 3
	(S) If $\alpha = \sqrt{2}$, then $t + 3$ is equal to	(5) 5
_		
	(A) $(P) \rightarrow (2)$ $(Q) \rightarrow (1)$ $(R) \rightarrow (4)$	$(S) \rightarrow (5)$
	(B) $(P) \rightarrow (2) (Q) \rightarrow (4) (R) \rightarrow (3)$	$(S) \rightarrow (5)$
	(C) $(P) \rightarrow (2)$ $(Q) \rightarrow (1)$ $(R) \rightarrow (4)$	$(S) \rightarrow (3)$

 $(S) \rightarrow (3)$

 $(P) \rightarrow (5) \quad (Q) \rightarrow (4) \quad (R) \rightarrow (1)$

ANALYSIS OF JEE ADVANCED 2025 - MATHEMATICS PAPER-2

Topics		Easy	Medium	Difficult	Total	Percentage
Calculus(XII)	XII Class	1	4	2	7	43.75%
Trigonometry	XI Class	0	1	0	1	6.25%
Algebra (XII)	XII Class	0	0	1	1	6.25%
Algebra (XI)	XI Class	2	0	0	2	12.50%
Coordinate Geometry	XI Class	0	2	0	2	12.50%
Probability (XII)	XII Class	0	1	0	1	6.25%
Probability (XI)	XI Class	0	0	0	0	0.00%
Reasoning	XI Class	0	0	0	0	0.00%
3-D (XII)	XII Class	0	0	0	0	0.00%
Vectors	XII Class	1	0	0	1	6.25%
Calculus(XI)	XI Class	0	0	1	1	6.25%
Statistics (XI)	XI Class	0	0	0	0	0.00%
Total		4	8	4	16	100%

XII syllabus

XI syllabus

10

6

Percentage Portion asked from Syllabus of Class XI & XII

SECTION 1 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:
 - Full Marks: +3If ONLY the correct option is chosen;Zero Marks: 0If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

Q.1 Let x_0 be the real number such that $e^{x_0} + x_0 = 0$. For a given real number α , define

$$g(x) = \frac{3xe^x + 3x - \alpha e^x - \alpha x}{3(e^x + 1)}$$

for all real numbers *x*.

Then which one of the following statements is TRUE?

(A)	For $\alpha = 2$, $\lim_{x \to x_0} \left \frac{g(x) + e^{x_0}}{x - x_0} \right = 0$
(B)	For $\alpha = 2$, $\lim_{x \to x_0} \left \frac{g(x) + e^{x_0}}{x - x_0} \right = 1$
(C)	For $\alpha = 3$, $\lim_{x \to x_0} \left \frac{g(x) + e^{x_0}}{x - x_0} \right = 0$
(D)	For $\alpha = 3$, $\lim_{x \to x_0} \left \frac{g(x) + e^{x_0}}{x - x_0} \right = \frac{2}{3}$

Q.2 Let \mathbb{R} denote the set of all real numbers. Then the area of the region

$$\left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x} , 5x - 4y - 1 > 0, 4x + 4y - 17 < 0 \right\}$$

is

(A)	$\frac{17}{16} - \log_e 4$	(B)	$\frac{33}{8} - \log_e 4$
(C)	$\frac{57}{8} - \log_e 4$	(D)	$\frac{17}{2} - \log_e 4$

Q.3

$$\theta = \tan^{-1}(2\tan\theta) - \frac{1}{2}\sin^{-1}\left(\frac{6\tan\theta}{9 + \tan^2\theta}\right)$$

is

(Here, the inverse trigonometric functions $\sin^{-1} x$ and $\tan^{-1} x$ assume values in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, respectively.) 1 (B) 2 (C) 3 5 (A) (D)

Q.4 Let S denote the locus of the point of intersection of the pair of lines

$$4x - 3y = 12\alpha,$$

$$4\alpha x + 3\alpha y = 12,$$

where α varies over the set of non-zero real numbers. Let T be the tangent to S passing through the points (p, 0) and (0, q), q > 0, and parallel to the line $4x - \frac{3}{\sqrt{2}}y = 0$.

Then the value of *pq* is

	(A) $-6\sqrt{2}$ (B) $-3\sqrt{2}$ (C) $-9\sqrt{2}$ (D)	$-12\sqrt{2}$
--	--	---------------

	SECTION 2 (Maximum Marks: 16)
•	This section contains FOUR (04) questions.
•	Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four
	option(s) is(are) correct answer(s).
٠	For each question, choose the option(s) corresponding to (all) the correct answer(s).
•	Answer to each question will be evaluated according to the following marking scheme:
	Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;
	<i>Partial Marks</i> : +3 If all the four options are correct but ONLY three options are chosen;
	<i>Partial Marks</i> : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
	Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
	Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
	Negative Marks : -2 In all other cases.
٠	For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct
	answers, then
	choosing ONLY (A), (B) and (D) will get +4 marks;
	choosing ONLY (A) and (B) will get +2 marks;
	choosing ONLY (A) and (D) will get ± 2 marks;
	choosing ONLY (A) will get ± 1 mark:
	choosing ONLY (B) will get +1 mark:
	choosing ONLY (D) will get +1 mark;
	choosing no option (i.e. the question is unanswered) will get 0 marks; and
	choosing any other combination of options will get -2 marks.

Q.5

Let $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $P = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$. Let $Q = \begin{pmatrix} x & y \\ z & 4 \end{pmatrix}$ for some non-zero real numbers *x*, *y*, and *z*, for which there is a 2 × 2 matrix *R* with all entries being non-zero real numbers, such that QR = RP.

(A)	The determinant of $Q - 2I$ is zero
(B)	The determinant of $Q - 6I$ is 12
(C)	The determinant of $Q - 3I$ is 15
(D)	yz = 2

Q.6 Let S denote the locus of the mid-points of those chords of the parabola $y^2 = x$, such that the area of the region enclosed between the parabola and the chord is $\frac{4}{3}$. Let \mathcal{R} denote the region lying in the first quadrant, enclosed by the parabola $y^2 = x$, the curve S, and the lines x = 1 and x = 4.

Then which of the following statements is (are) TRUE?

(A)	$(4, \sqrt{3}) \in S$
(B)	$(5, \sqrt{2}) \in S$
(C)	Area of \mathcal{R} is $\frac{14}{3} - 2\sqrt{3}$
(D)	Area of \mathcal{P} is $\frac{14}{\sqrt{2}}$
(2)	Alea of \mathcal{K} is $\frac{1}{3} = \sqrt{3}$

Q.7 Let $P(x_1, y_1)$ and $Q(x_2, y_2)$ be two distinct points on the ellipse

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

such that $y_1 > 0$, and $y_2 > 0$. Let C denote the circle $x^2 + y^2 = 9$, and M be the point (3, 0).

Suppose the line $x = x_1$ intersects *C* at *R*, and the line $x = x_2$ intersects *C* at *S*, such that the *y*-coordinates of *R* and *S* are positive. Let $\angle ROM = \frac{\pi}{6}$ and $\angle SOM = \frac{\pi}{3}$, where *O* denotes the origin (0, 0). Let |XY| denote the length of the line segment *XY*.

Then which of the following statements is (are) TRUE?

(A)	The equation of the line joining P and Q is $2x + 3y = 3(1 + \sqrt{3})$
(B)	The equation of the line joining P and Q is $2x + y = 3(1 + \sqrt{3})$
(C)	If $N_2 = (x_2, 0)$, then $3 N_2Q = 2 N_2S $
(D)	If $N_1 = (x_1, 0)$, then $9 N_1P = 4 N_1R $

Q.8

Let \mathbb{R} denote the set of all real numbers. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$F(x) = \begin{cases} \frac{6x + \sin x}{2x + \sin x} & \text{if } x \neq 0, \\ \frac{7}{3} & \text{if } x = 0. \end{cases}$$

(A)	The point $x = 0$ is a point of local maxima of f
(B)	The point $x = 0$ is a point of local minima of f
(C)	Number of points of local maxima of f in the interval $[\pi, 6\pi]$ is 3
(D)	Number of points of local minima of f in the interval $[2\pi, 4\pi]$ is 1

SECTION 3 (Maximum Marks: 32)

- This section contains EIGHT (08) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct numerical value is entered in the designated place; *Zero Marks* : 0 In all other cases.

Q.9 Let y(x) be the solution of the differential equation

$$x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}$$
,

satisfying y(1) = 0. Then the value of $2\frac{(y(e))^2}{y(e^2)}$ is _____

Q.10 Let a_0, a_1, \dots, a_{23} be real numbers such that

$$\left(1 + \frac{2}{5}x\right)^{23} = \sum_{i=0}^{23} a_i x^i$$

for every real number x. Let a_r be the largest among the numbers a_j for $0 \le j \le 23$. Then the value of r is ______.

Q.11 A factory has a total of three manufacturing units, M_1, M_2 , and M_3 , which produce bulbs independent of each other. The units M_1, M_2 , and M_3 produce bulbs in the proportions of 2: 2: 1, respectively. It is known that 20% of the bulbs produced in the factory are defective. It is also known that, of all the bulbs produced by M_1 , 15% are defective. Suppose that, if a randomly chosen bulb produced in the factory is found to be defective, the probability that it was produced by M_2 is $\frac{2}{5}$.

If a bulb is chosen randomly from the bulbs produced by M_3 , then the probability that it is defective is _____.

Q.12 Consider the vectors

 $\vec{x} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$, $\vec{y} = 2\hat{\imath} + 3\hat{\jmath} + \hat{k}$, and $\vec{z} = 3\hat{\imath} + \hat{\jmath} + 2\hat{k}$.

For two distinct positive real numbers α and β , define

 $\vec{X} = \alpha \vec{x} + \beta \vec{y} - \vec{z}$, $\vec{Y} = \alpha \vec{y} + \beta \vec{z} - \vec{x}$, and $\vec{Z} = \alpha \vec{z} + \beta \vec{x} - \vec{y}$.

If the vectors \vec{X} , \vec{Y} , and \vec{Z} lie in a plane, then the value of $\alpha + \beta - 3$ is

Q.13 For a non-zero complex number z, let $\arg(z)$ denote the principal argument of z, with $-\pi < \arg(z) \le \pi$. Let ω be the cube root of unity for which $0 < \arg(\omega) < \pi$. Let

$$\alpha = \arg\left(\sum_{n=1}^{2025} (-\omega)^n\right).$$

Then the value of $\frac{3\alpha}{\pi}$ is _____.

Q.14 Let \mathbb{R} denote the set of all real numbers. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to (0, 4)$ be functions defined by

$$f(x) = \log_e(x^2 + 2x + 4)$$
, and $g(x) = \frac{4}{1 + e^{-2x}}$.

Define the composite function $f \circ g^{-1}$ by $(f \circ g^{-1})(x) = f(g^{-1}(x))$, where g^{-1} is the inverse of the function g.

Then the value of the derivative of the composite function $f \circ g^{-1}$ at x = 2 is _____

