

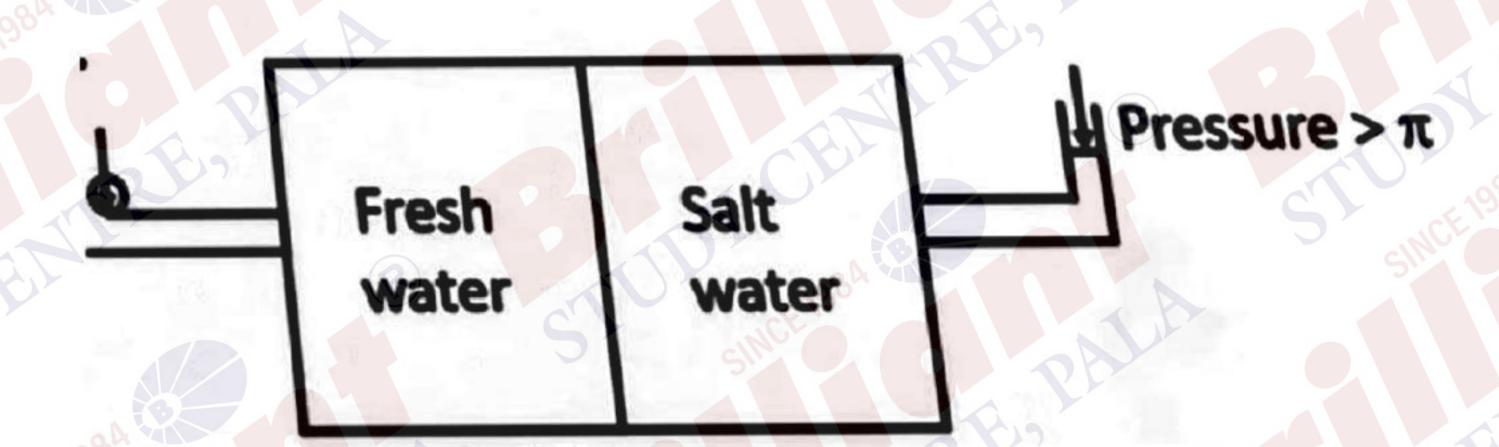
JEEMAIN 2025 SESSION-2 DAY 3

VIDEO SOLUTION

SCAN ME

MEMORY BASED
OUESTIONS

CHEMISTRY


- 1. In the following, the number of paramagnetic molecules are: O₂, N₂, F₂, B₃, Cl₂
- 2. Which of the following pair of ions have equal number of unpaired electrons
 - 1) V^{2+} and Ni^{2+}
- 2) Cr²⁺ and Mn²⁺
- 3) Fe²⁺ and Sc²⁺
- 4) Mn³⁺ and Fe²⁺

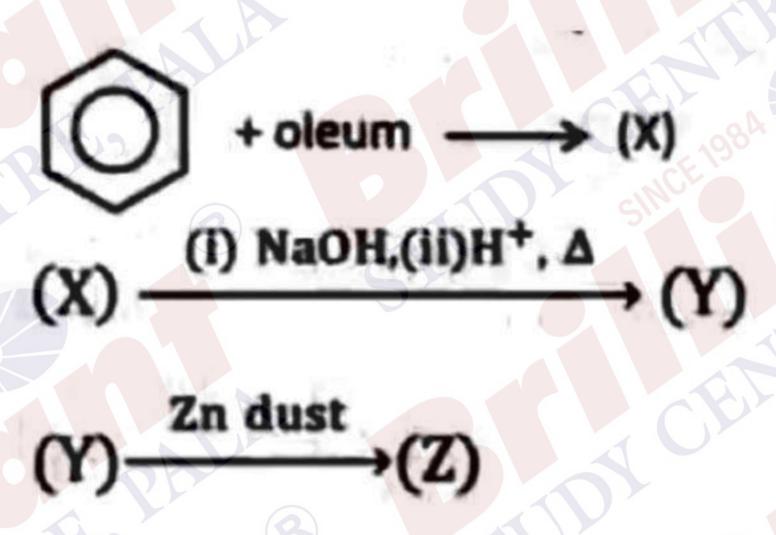
- 3. Incorrect order of atomic radius is
 - 1) B < Al
- 2) In < Tl
- 3) Al < Ga
- 4) Ga < ln
- 4. One mole of an ideal gas expands from 10 dm^3 to 20 dm^3 through isothermal reversible process. Find ΔU , q & w
 - 1) $\Delta U = 0$, q = 0, w = 0

2) $\Delta U = 0$, $q \neq 0$, $w \neq 0$

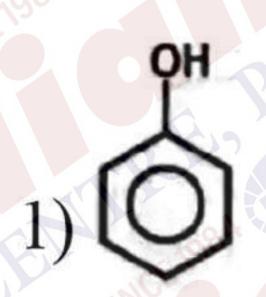
3) $\Delta U \neq 0$, q=0, w $\neq 0$

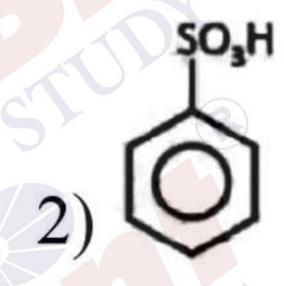
- 4) $\Delta U \neq 0$, $q\neq 0$, $w\neq 0$
- 5. Observe the following diagram

For reverse osmosis, which of the following can be used for porous membrane

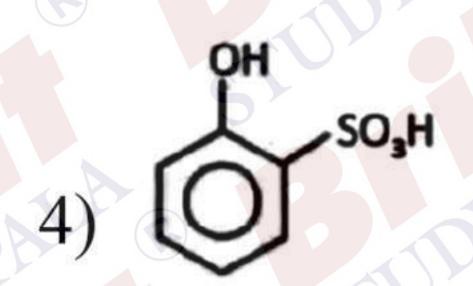

- 1) Cellulose acetate
- 2) Porous silicate
- 3) Silicone
- 4) Glass membrane
- 6. Which of the following is the ratio of 5th Bohr orbit (r₅) of He⁺ and Li²⁺?
 - 1) 2/3

2) 3/2

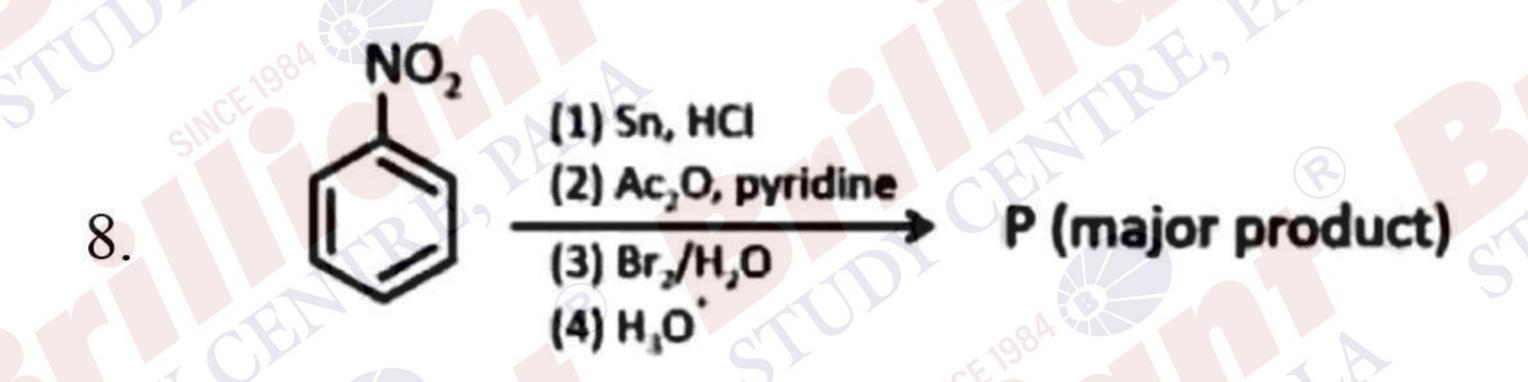

3) 9/4

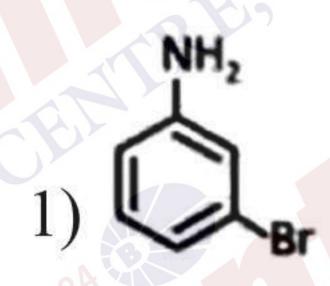

4) 4/9

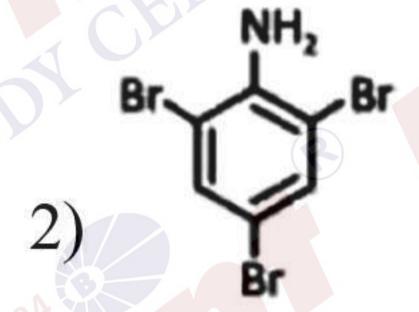
7. In the reaction sequence:

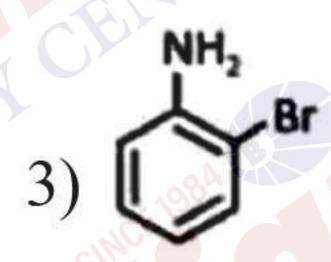


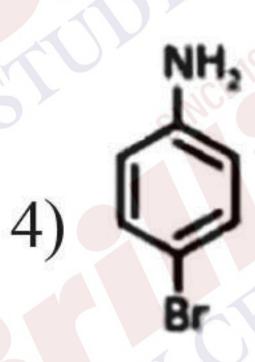
The compound (Z) is





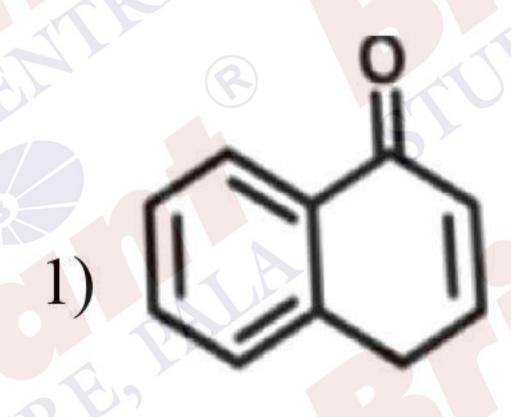


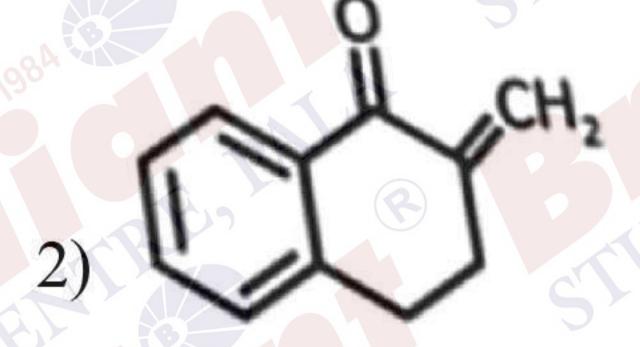


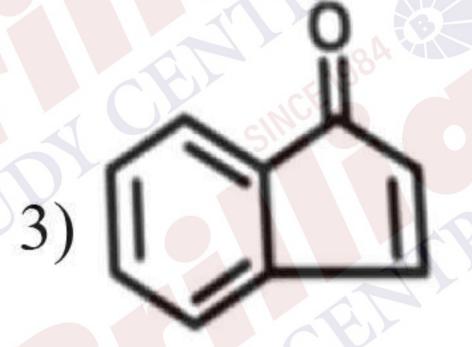

Ph - 04822 206416, 206516, 206459 www.brilliantpala.org

- 9. Which of the following is correct option regarding 1s orbital
 - 1) it is symmetrical
- 2) it is non-symmetrical
- 3) it is directional
- 4) it has two radial nodes
- 10. Total number of stereoisomers possible for complexes $[Cr(Cl_3)(Py)_3]$ and $[CrCl_2(C_2O_4)_2]$ respectively are
 - 1) 2, 3
- 2) 3, 2
- (3)3,3

- 4) 2, 2
- In lead storage battery during charging oxidation state of lead show changes at anode from x_1 to y_1 at cathode from x_2 to y_2 . Find the value of x_1 , y_1 , x_2 , y_2


1)
$$x_1 = +2$$
, $y_1 = 0$; $x_2 = +2$, $y_2 = +4$


2)
$$x_1 = +4$$
, $y_1 = 0$; $x_2 = +2$, $y_2 = +4$


3)
$$x_1 = 0$$
, $y_1 = +2$; $x_2 = +4$, $y_2 = +2$

4)
$$x_1 = +2$$
, $y_1 = 0$; $x_2 = +4$, $y_2 = 0$

12. Which of the following compound is not a product of intramolecular aldol condensation reaction?

- 13. 0.01 M HX ($K_a = 4 \times 10^{-10}$) is diluted till the solution has pH = 6. If the new concentration is x × 10^{-4} M, then find x.
- 14. Consider the reaction $A + B \rightarrow Product$. $R = k[A]^m[B]^n$. When conc. of A and B taken are A_1 and B_1 respectively, then rate of reaction is R_1 . When conc. of A & B taken are $2A_1$ & $\frac{B_1}{2}$, then rate of

reaction is R_2 . Find $\frac{R_2}{R_1}$?

- 1) 2^{m+n}
- 2) 2n-m
- $3) 2^{m-n}$

® 04-04-2025

SHIFT 1-MORNING

MEMORY BASED QUESTIONS

CHEMISTRY

15. Statement-I: (A) C_2H_5 — CH = $\overset{2}{CH}$ — CHO has higher diopole moment than (B)

$$C_2H_5 - CH_2 - CHO$$
.

Statement-II: C1 - C2 bond length in (A) is longer than (B)

In the light of the above statements, choose the correct option

- 1) Both statement-I and statement-II are correct
- 2) Both statement-I and statement-II are incorrect
- 3) Statement-I is correct but statement-II is incorrect
- 4) Statement-I is incorrect but statement-II is correct
- 16. The complex ion having crysta field stabilization energy is zero and value of spin only magnetic moment is 5.92 BM
 - 1) $[FeF_6]^{4-}$
- 2) [Mn(SCN)₆]⁴⁻
- 3) $[Co(NH_3)_6]^{3+}$
- 4) $[Fe(CN)_6]^{3-}$
- 17. KMnO₄ oxidises others in acidic medium, Difference between two oxidation states of Mn is x. Neutral FeCl₃ reacts with oxalate to form a complex compound having y-d-electrons. Find x + y.
 - 1) 5
- 2) 10
- 3)6
- 4) 8
- 18. The activation energy of forward reaction and backward reaction is 100 kJ/mol and 180 kJ/mol respectively. Find the correct statement if catalyst is added under same condition of temperature
 - 1) Catalyst does not change ΔG of reaction
 - 2) Catalyst can make non-spontaneous reaction spontaneous
 - 3) Catalyst changes ΔH of reaction
 - 4) Enthalpy of reaction ΔH is 280 kJ/mo
- 19. In the following sequence of reaction. A is converted to D

$$C_3H_6O \xrightarrow{H_2/Pd} B \xrightarrow{HBr} C \xrightarrow{Mg/Ether} D$$
 D is treated with A followed by hydrolysis to give

- 2, 3-dimethyl-butan-2-ol. Then identify A, B, C
- 1) $A = CH_3COCH_3$, $B = CH_3-CH(OH)CH_3$, $C = CH_3-CH(Br)CH_3$
- 2) $A = CH_3CH_2CHO$, $B = CH_3CH_2CH_2OH$, $C = CH_3CH_2CH_2Br$
- 3) $A = CH_2 = CH_2 CH_2 OH$, $B = CH_3 CH_2 CH_2 OH$, $C = CH_3 CH_2 CH_2 Br$
- 4) A = Cyclopropanol, B = Cyclopropenone, C = Bromo propane

MEMORY BASED QUESTIONS

CHEMISTRY

15. Statement-I: (A) C_2H_5 — CH = $\overset{2}{CH}$ — CHO has higher diopole moment than (B)

$$C_2H_5 - CH_2 - CHO$$

Statement-II: C1 - C2 bond length in (A) is longer than (B)

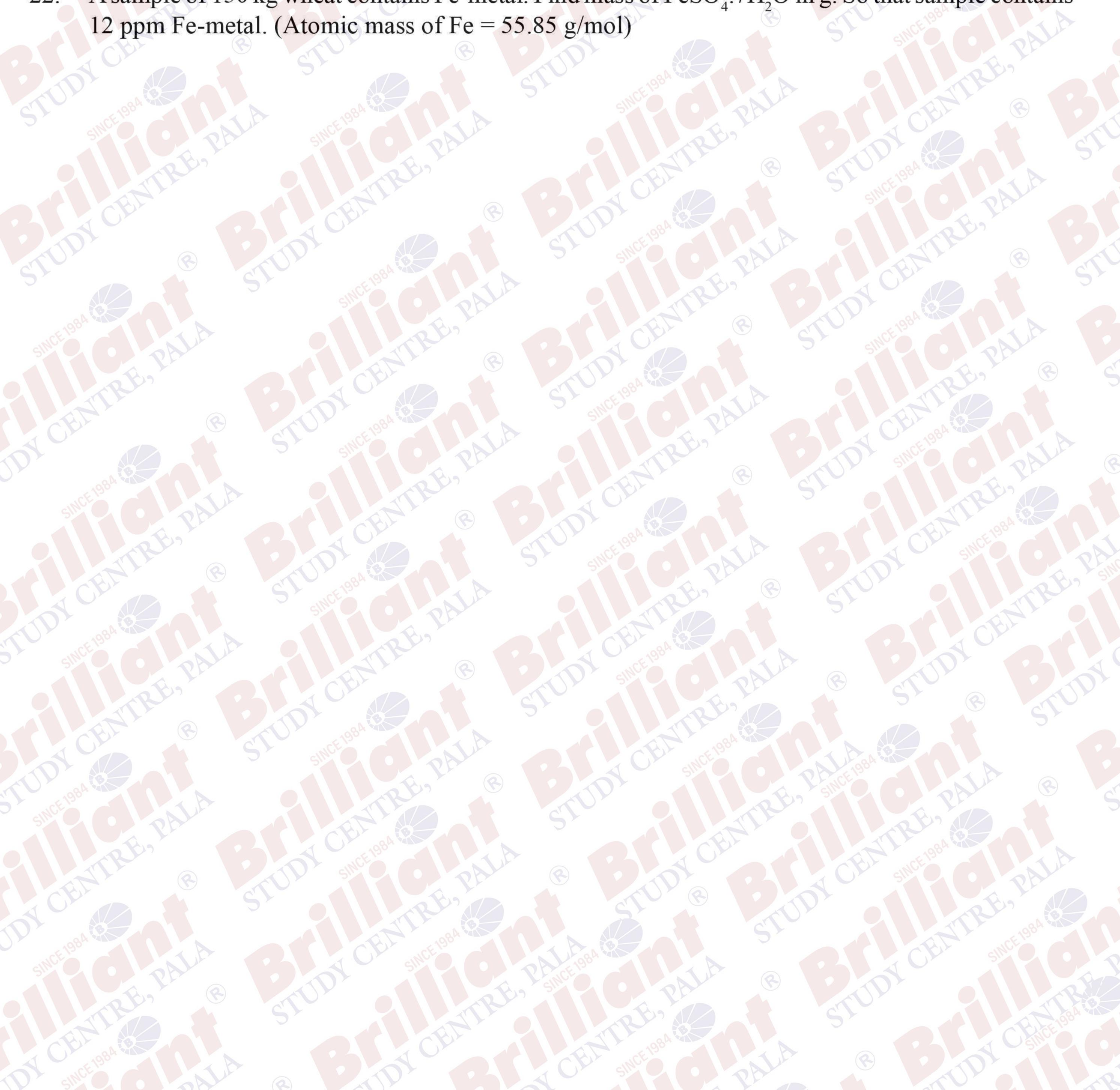
In the light of the above statements, choose the correct option

- 1) Both statement-I and statement-II are correct
- 2) Both statement-I and statement-II are incorrect
- 3) Statement-I is correct but statement-II is incorrect
- 4) Statement-I is incorrect but statement-II is correct
- The complex ion having crysta field stabilization energy is zero and value of spin only magnetic 16. moment is 5.92 BM
 - 1) [FeF₆]⁴⁻
- 2) [Mn(SCN)₆]⁴⁻
- 3) $[Co(NH_3)_6]^{3+}$
- 4) [Fe(CN)₆]³⁻
- KMnO₄ oxidises others in acidic medium, Difference between two oxidation states of Mn is x. Neutral FeCl, reacts with oxalate to form a complex compound having y-d-electrons. Find x + y.
- 2) 10
- 3)6
- 4)8
- The activation energy of forward reaction and backward reaction is 100 kJ/mol and 180 kJ/mol respectively. Find the correct statement if catalyst is added under same condition of temperature
 - 1) Catalyst does not change ΔG of reaction
 - 2) Catalyst can make non-spontaneous reaction spontaneous
 - 3) Catalyst changes ΔH of reaction
 - 4) Enthalpy of reaction ΔH is 280 kJ/mo
- In the following sequence of reaction. A is converted to D

$$C_3H_6O \xrightarrow{H_2/Pd} B \xrightarrow{HBr} C \xrightarrow{Mg/Ether} D$$
 D is treated with A followed by hydrolysis to give

- 2, 3-dimethyl-butan-2-ol. Then identify A, B, C
- 1) $A = CH_3COCH_3$, $B = CH_3-CH(OH)CH_3$, $C = CH_3-CH(Br)CH_3$
- A = CH_3CH_2CHO , B = $CH_3CH_2CH_2OH$, C = $CH_3CH_2CH_2Br$
- 3) $A = CH_2 = CH_2 + CH_2 +$
- 4) A = Cyclopropanol, B = Cyclopropenone, C = Bromo propane

04-04-2025


SHIFT 1-MORNING

MEMORY BASED QUESTIONS

CHEMISTRY

- In Duma's method for estimatino of N, 0.5 g of an organic compound gave 150 mL of N, collected 20. at 300 K and 900 mm Hg pressure (Aq. tension is 15 mm Hg). Find \$ of N
- Given below is a sample of DNA strand 5'GGCAATGCTACAG3". Find the number of hydrogen bonds prevent in this DNa strand.
- A sample of 150 kg wheat contains Fe-metal. Find mass of FeSO₄.7H₂O in g. So that sample contains 12 ppm Fe-metal. (Atomic mass of Fe = 55.85 g/mol)

MATHEMATICS

The number of integral values of $n \in N$ for which the equation $x^2 + 4x - n = 0, n \in [20, 100]$ have integral roots, is

1) 4

2) 5

3)6

In binomial expansion, $\left(2^{\frac{1}{3}} + 3^{-\frac{1}{3}}\right)^m$ if ratio of 15th term from beginning and 15th term from end is

1:6, find n

- 1) $\{x, y \in Z : x^2 + y^2 = 5\}$
- 2) $\{x, y \in Z : x^2 + 9y^2 = 144\}$
- 3) $\{x, y \in N : x^2 + y^2 \le 4\}$
- 4) A \cap B

Number of one-one functions from $D \rightarrow C$

Let $|x-5| \le y \le 4\sqrt{x}$. If the area enclosed is A, then 3A equals to

The sum of the series $1+3+5^2+7+9^2+...$ upto 80 terms is

- 1) 326870
- 2) 328160
- 3) 339400
- 4) 338160

4. Solve $\int_{1}^{1} \frac{1+2x}{e^{-x}+ex} dx$

1)
$$2\left(\tan^{-1}e - \frac{\pi}{4}\right)$$

2)
$$2\left(\tan^{-1} e - \frac{\pi}{3}\right)$$

3)
$$2\left(\tan^{-1} e - \frac{\pi}{2}\right)$$

1)
$$2\left(\tan^{-1}e - \frac{\pi}{4}\right)$$
 2) $2\left(\tan^{-1}e - \frac{\pi}{3}\right)$ 3) $2\left(\tan^{-1}e - \frac{\pi}{2}\right)$ 4) $2\left(\frac{\pi}{2} - \tan^{-1}e\right)$

Let there be two A.P's with each having 2025 terms. Find the number of distinct in union of these two A.P.'s, i.e, A∪B if first A.P is 1,6,11,...and second A.P is 9,16,23,.....

- 1) 3761
- 2) 4035
- 3) 3022
- 4) 2025

If the equation of an ellipse E is $\frac{x^2}{9} + \frac{y^2}{16} = 1$ then the length of latus rectum of E is

MATHEMATICS

- 7. The sum of the series $1+3+5^2+7+9^2+....$ upto 80 terms is
 - 1) 328160
- 2) 338160
- 3) 339400
- 4) 326870
- 8. In 10 balls, 3 are defective. If 2 are chosen at random, find variance (σ^2) of the defective balls

9. Let
$$A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$$
. Here $A^2 = A^T$

Then find trace $\left[(A+I)^3 + (A-I)^3 - 6A \right]$

- 10. If $\lim_{x \to 1^+} \frac{(x-1)[6+\lambda\cos(x-1)] + \mu\sin(x-1)}{(x-1)^3} = -1$. Then the value of $\lambda + \mu$
 - 1) -6
- 2) -4
- 3)4

- 4) 2
- 11. Find the length of latus rectum of an ellipse if foci are (2,5) and (2,-3) and the eccentricity of the ellipse is $\frac{4}{5}$
 - 1) $\frac{32}{3}$
- 2) $\frac{32}{5}$
- 3) $\frac{18}{5}$
- 4) $\frac{16}{5}$

12.
$$\int_{-1}^{1} \frac{\left[1 + \sqrt{|x| - x}\right] e^{x} + \left(\sqrt{|x| - x}\right) e^{-x}}{e^{x} + e^{-x}}$$

- 13. If $10\sin^4\theta + 15\cos^4\theta = 6$, then find the value of $\frac{27\cos ec^6\theta + 8\sec^6\theta}{8\sec^8\theta}$
 - 1) $\frac{3}{5}$
- 2) $\frac{2}{5}$
- 3) $\frac{1}{5}$
- 4) $\frac{4}{5}$
- 14. Consider a committee of 12 members is formed randomly out of 4 Engineers, 2 Doctors and 10 Professors. Find the probability that the committee has exactly 3 Engineers and 1 Doctor
- 15. If $\vec{v} = 2\hat{i} + \hat{j} \lambda \hat{k}$, $(\lambda > 0)$, $\vec{u} = 3\hat{i} \hat{j}$ and \vec{v}_1 is parallel to \vec{u} , \vec{v}_2 is perpendicular to \vec{u} and $\vec{v} = \vec{v}_1 + \vec{v}_2$

. If angle between \vec{v} nad \vec{v}_1 is $\cos^1\left(\frac{\sqrt{5}}{2\sqrt{7}}\right)$, then $\left|\vec{v}_1\right|^2 + \left|\vec{v}_2\right|^2$ equals to

16. Given two lines

 $L_1: \frac{x-3}{3} = \frac{y-a}{1} = \frac{z+z}{-2} \text{ and } L_2: \frac{x+1}{z} = \frac{y+z}{1} = \frac{z-\beta}{-1}$

If shortest distance between L_1 and L_2 is $30\sqrt{3}$. Then the value of $|\alpha + \beta|$

- 17. Let A and B be two distinct points on the line L: $\frac{x-6}{3} = \frac{y-7}{3} = \frac{z-7}{-2}$ Both A and B are at a distance $2\sqrt{17}$ from the foot of the perpendicular drawn from the point (1,2,3) on the line L. If O is origine then OA.OB is equal to
- There are 10 pens such that 3 pens are defective. Let X represent the number of defective pen selected. If two pens are selected at random then variance of X is
- 3) $\frac{14}{75}$
- Let α and β be the number of points where the function $f(x) = \max\{x, x^3, x^5, ..., x^{21}\}$ is not continuous and not differentiable respectively, then find $\alpha + \beta$

- 3) 2
- 4) 4
- 20. If $f(x) = 1 2x + \int e^{x-t} f(t) dt$, then the area bounded by the curve y = f(x) and coordinate axes is

(in square units)

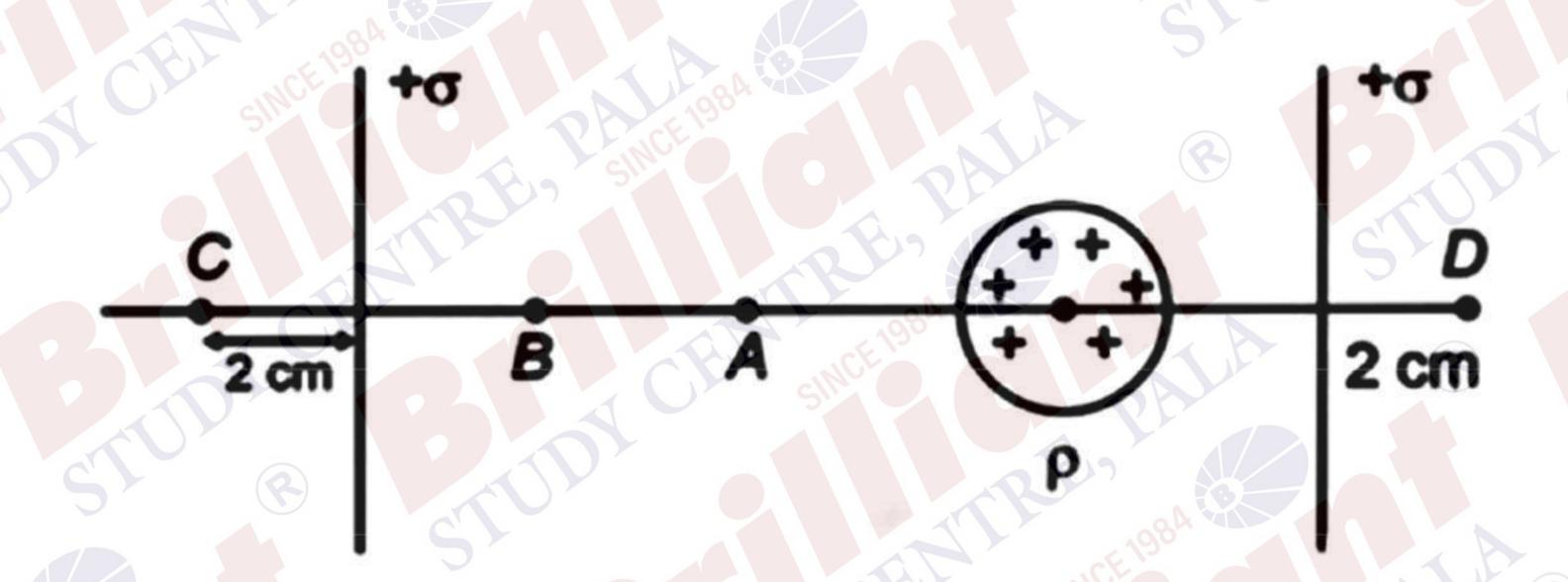
- The value of $\sin^{-1}\left(\frac{\sqrt{3}x}{2} + \frac{1}{2}\sqrt{1 x^2}\right) \frac{1}{2} < x < \frac{1}{\sqrt{2}}$ is equivalent to
 - 1) $\frac{2\pi}{3} \cos^{-1} x, -\frac{1}{2} < x < \frac{1}{\sqrt{2}}$
 - 2) $\pi \cos^{-1} x$, $-\frac{1}{2} < x < \frac{1}{\sqrt{2}}$
 - 3) $\frac{\pi}{3} \cos^{-1} x, -\frac{1}{2} < x < \frac{1}{\sqrt{2}}$
 - 4) $\frac{\pi}{2} \sin^{-1} x, -\frac{1}{2} < x < \frac{1}{\sqrt{2}}$

MEMORY BASED QUESTIONS

PHYSICS

Assertion: In photoelectric effect, if intensity of monochromatic light is increased then stopping potential increases.

Reason: Increased intensity results in increment of photocurrent


- 1) A is correct, R is correct and R is explanation of A
- 2) A is correct, R is correct and R is not explanation of A
- 3) A is incorrect and R is correct
- 4) A is correct and R is incorrect
- Longitudinal sound waves travel in three different gases namely helium, methane and carbon dioxide. Mean temperature of three gases are equal then ratio of speeds of wave in 3 gases respectively is
 - 1) $\sqrt{5}:\sqrt{7}:\frac{1}{\sqrt{11}}$ 2) $\sqrt{3}:\sqrt{5}:\frac{1}{\sqrt{11}}$ 3) $\sqrt{5}:1:\sqrt{\frac{21}{55}}$ 4) $\frac{1}{\sqrt{3}}:\frac{1}{\sqrt{5}}:\frac{1}{2}$

- Assertion (A): The minimum kinetic energy required to take a body of mass m from surface of earth to infinity is mgR.

Reason (R): Potential energy at surface of earth is zero

- 1) (A) and (R) both are correct and (R) is correct explanation of (A)
- 2) (A) and (R) both are correct and (R) is not correct explanation of (A)
- 3) (A) is correct but (R) is incorrect
- 4) (A) is incorrect but (R) is correct
- If slit width is double then % change in fringe width
 - 1) 50%
- 2) remain same
- 3) 150%
- 4) 75%
- In arrangement shown, has two non conducting plane sheet with charge density o and a non conducting sphere with volume charge density p.

Choose the correct relation between the magnitude of electric field at A, B, C and D. Point A is at the middle of two sheets.

1)
$$E_A = E_B$$
, $E_C \neq E_D$ 2) $E_A > E_B$, $E_C \neq E_D$ 3) $E_A > E_B$, $E_C = E_D$ 4) $E_A \neq E_B$, $E_C = E_D$

2)
$$E_{A} > E_{B}$$
, $E_{C} \neq E_{D}$

3)
$$E_A > E_B, E_C = E_D$$

4)
$$E_A \neq E_B$$
, $E_C = E_D$

Ph - 04822 206416, 206516, 206459 www.brilliantpala.org

Two simple pendulums with amplitudes θ_1 and θ_2 have length of strings as l_1 and l_2 respectively. Choose the correct options if the maximum angular accelerations are same.

1) $\theta_1 l_1 = \theta_2 l_2$

(2) $\theta_1 l_2 = \theta_2 l_1$

3) $\theta_1 l_1^2 = \theta_2 l_2^2$

4) $\theta_1 l_2^2 = \theta_2 l_1^2$

In YDSE setup, distance between slits d = 0.2 mm. If d is changed to 0.4 mm, then % change in fringe width

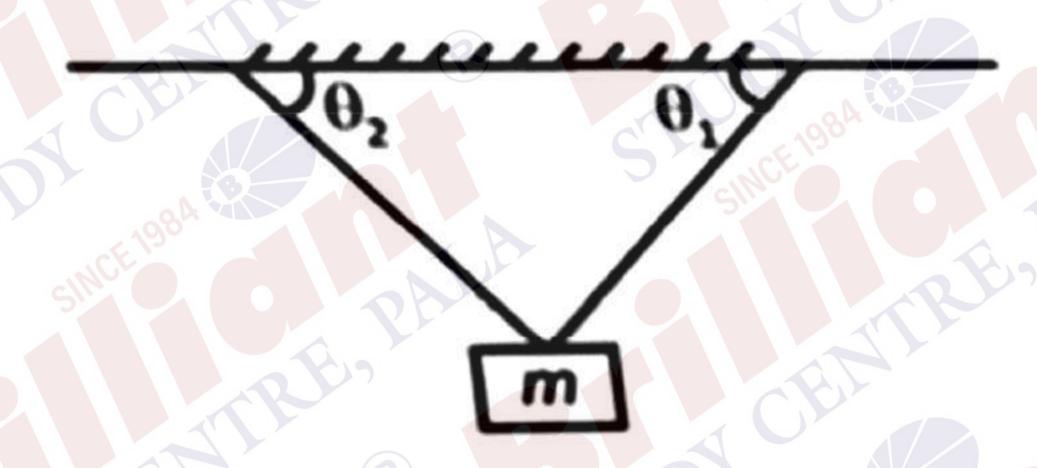
1) 25%

2) 50%

3) 100%

4) 75%

A closed organ pipe having fundamental frequency f_0 . Now $\frac{1}{2}$ of volume its filled with water then % change in the fundamental frequency.


1) +10%

2) +25%

3) -20%

4)-10%

A block of mass m kg is connected two strings as shown. If $T_1 = \sqrt{3}T_2$, then choose correct option

1)
$$\theta_1 = 60^\circ$$
, $\theta_2 = 30^\circ$, $T_1 = \frac{mg}{2}$

2)
$$\theta_1 = 60^\circ$$
, $\theta_2 = 30^\circ$, $T_2 = \frac{mg}{2}$

3)
$$\theta_1 = 30^\circ$$
, $\theta_2 = 60^\circ$, $T_1 = \frac{3mg}{4}$

4)
$$\theta_1 = 30^\circ$$
, $\theta_2 = 30^\circ$, $T_2 = \frac{3mg}{4}$

Which of the following is correct expression for torque 10.

1) $\vec{\tau} = \vec{r} \times \vec{L}$

2) $\vec{\tau} = \vec{r} \times \vec{F}$

3) $\frac{d}{dt}(\vec{r} \times \vec{p})$

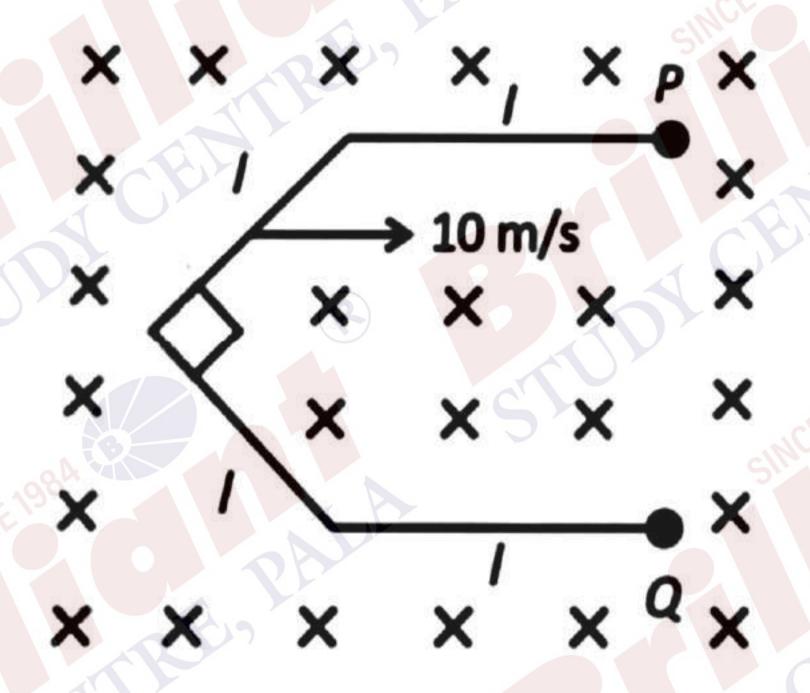
4) $\vec{r} \times \frac{d}{dt}(\vec{p})$

An electric dipole with charges 2 µC and a separation 20 cm is placed close to an infinitely charge non-conducting sheet with surface charge density 100 C/m². Find the torque acting on the dipole if the dipole makes an angle 30° with the normal to the sheet.

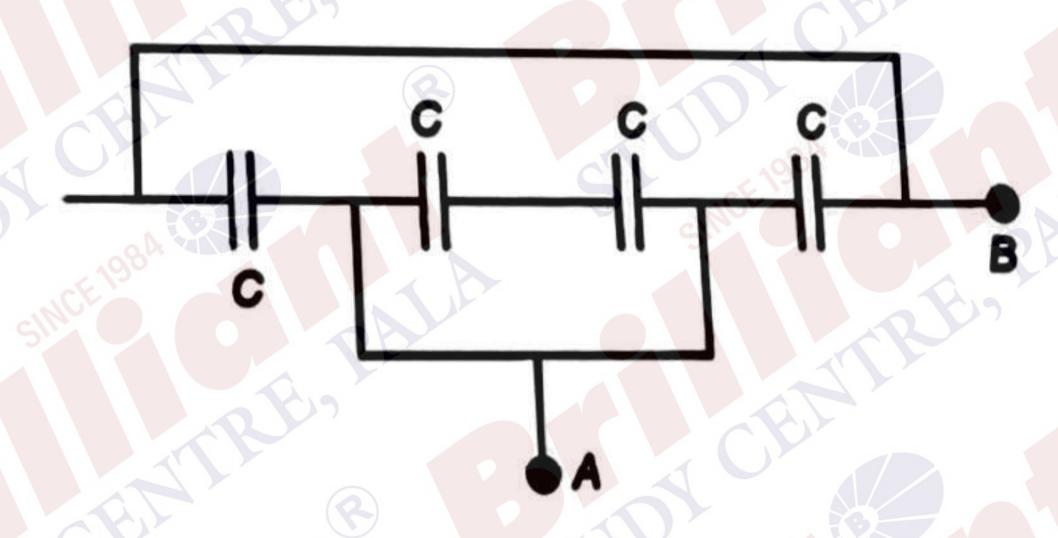
1) $\frac{12}{\epsilon_0} \times 10^{-5} \text{ N} - \text{m}$ 2) $\frac{2}{\epsilon_0} \times 10^{-5} \text{ N} - \text{m}$ 3) $\frac{4}{\epsilon_0} \times 10^{-5} \text{ N} - \text{m}$ 4) $\frac{1}{\epsilon_0} \times 10^{-5} \text{ N} - \text{m}$

The current in a AC circuit is given as $i = 100\sqrt{2} \sin\left(\frac{100\pi}{t}\right) A$. Find rms current and frequency is Hertz.

1) 100 A, 100 Hz


2) 50 A, 100 Hz

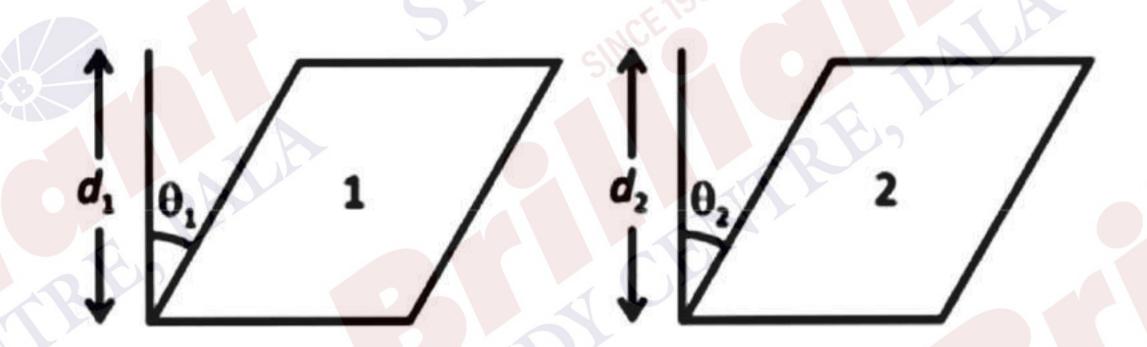
3) 200 A, 50 Hz


4) 100A, 50 Hz

PHYSICS

13. 4 rods of equal length are joined as shown in the figure. Combined system is moving with speed 10 m/s in a perpendicular magnetic field of $\frac{1}{\sqrt{2}}$ tesla. Find emf induced between point P and Q (l= 10 cm)

- 1) 1 volt
- 2) 0.1 volt
- 3) 2 volts
- 4) $\sqrt{2}$ volts
- 14. Find the equivalent capacitance between A and B, where $C = 16\mu F$


- 1) $48 \mu F$
- $2) 8 \mu F$
- $3)32 \mu F$
- 4) 16 µF
- 15. Mean free path for an ideal gas is to be observed 20 μm while average speed of molecules of gas is observed to be 600 m/s, then frequency of collision is near by
 - 1) 4×10^7
- 2) 1.2×10^7
- 3) 3×10^7
- 4) 2×10^{-7}
- A ring and a solid sphere released from rest from same height on enough rough inclined surface.

 Ratio of their speed when they reach at bottom is $\sqrt{\frac{7}{x}}$ m/s, then x is _____
- 17. Find the dimension of $\frac{E}{B}$ where, E represents electric field and B represents magnetic field
 - 1) ML^2T^{-1}
- 2) LT⁻¹
- 3) L^2T^{-1}
- 4) LT⁻²
- 18. A real object placed in front of a spherical mirror forms an image whose magnification is $-\frac{1}{3}$. If the distance between the image and object is 30 cm. The focal length of the mirror is ____ cm.
 - 1) -11.25 cm
- 2) -22.5 cm
- 3) -45 cm
- 4) -60 cm

MEMORY BASED QUESTIONS

PHYSICS

19. The figure shows two boxes with identical square cross-sections and heights h_1 and h_2 ($h_1 = 2h_2$) are made of different materials. An equal force is applied on the square cross-sections such that the deformations θ_1 and θ_2 are realized ($\theta_1 = 2\theta_2$). If shear modulus of box -1 is 4×10^9 N/m² and that of box -2 is $x \times 10^9$ N/m², then x is

20. \vec{L} and \vec{p} are angular momentum about origin and linear momentum of a particle. If position

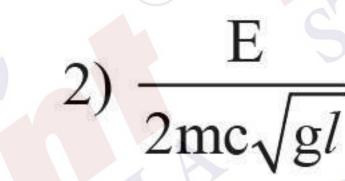
vector of particle is given as $\vec{r} = a(\sin \omega ti + \cos \omega t)$ then direction of force is

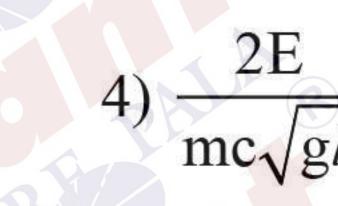
1) Opposite to $\vec{L} \times \vec{r}$

2) Opposite to $\vec{p} \times \vec{r}$

3) Opposite to $\vec{L} \cdot \vec{r}$

- 4) Opposite to $\vec{p} \times \vec{L}$
- 21. $V = 100\sqrt{2}\cos\omega t$ then V_{rms} is
 - 1) $100\sqrt{2}$
- 2) $200\sqrt{2}$
- 3) 200
- 4) 100


22. The Boolen expression $Y = A\overline{B}C + \overline{A}\overline{C}$ can be realised with which of the following gate


- 1) One-3 inpu gate
- 2t AND gate, 3 NOT gate and one-2 input OR gate, one-2 input AND
- 2) One- 3 input AND gate, 1 NOT gate, one-2 input NOR gate and one-2 input OR gates
- 3) 3- input OR gate, 3 NOT gates and one 2- input AND gate
- 4) 3 input AND gate, 3 NOT gates and one 2-input OR gate
- 23. A small mirror of mass m is suspended to a fix point with an ideal string of length l. A photon of energy E incident normally on the mirror. Find maximum angular deviation (θ) of the mirror.

3)
$$\frac{E}{\text{mc}\sqrt{2gl}}$$

® 04-04-2025

SHIFT 1-MORNING

MEMORY BASED QUESTIONS

PHYSICS

24. Regarding the rotational motion of rigid bodies, following two statements are given where symbols is are having usual meaning.

SI: Torque τ is given as $\vec{\tau} = \frac{d\vec{L}}{dt}$ and angular momentum about inertial point is given as

$$\vec{L} = \sum (\vec{r}_t \times \vec{p}_t).$$

S2: Torque τ is given as $\vec{\tau} = I\vec{r}$ and angular momentum about inertial point is given as $\vec{L} = I\vec{\omega}$.

- 1) S1 is correct and S2 is incorrect
- 2) S1 is incorrect and S2 is correct

3) Both are incorrect

4) Both are correct