

JEE MAIN 2025 SESSION-1 SHIFT-1 MORNING

VIDEO SOLUTION

SCAN ME

MEMORY BASED QUESTIONS

www.brilliantpala.org

MEMORY BASED QUESTIONS

CHEMISTRY

QN Which of the following is animal starch?

- 1) Lactose
- 2) Glycogen
- 3) Amylose
- 4) Amylopectin

QN

on Match the column

Column-I

Column-II

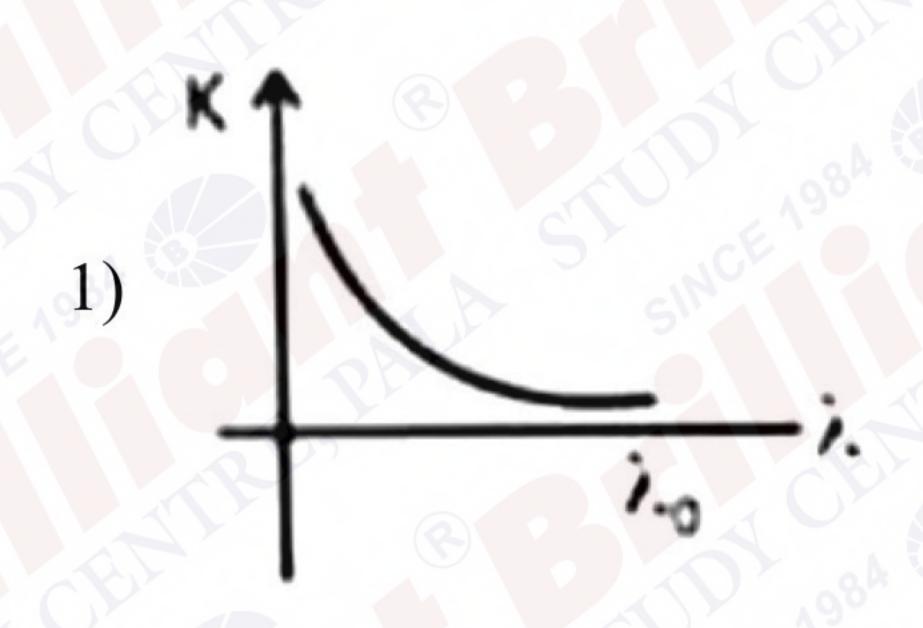
- a) Cellulose
- p) α -1, 4
- b) Amylose
- q) α -1, 4 & α -1, 6
- c) Amylopectin
- r) α -1, β -2
- d) Sucrose
- s) β -1, 4
- 1) $a \rightarrow s$; $b \rightarrow p$; $c \rightarrow q$; $d \rightarrow r$

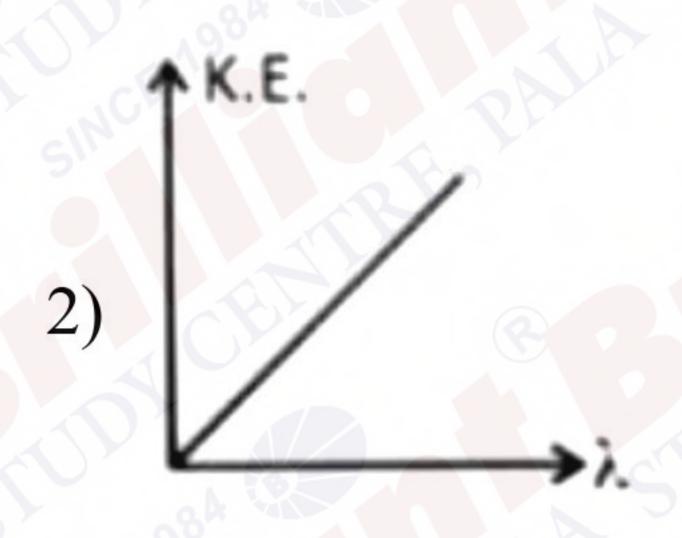
2) $a \rightarrow r$; $b \rightarrow q$; $c \rightarrow p$; $d \rightarrow s$

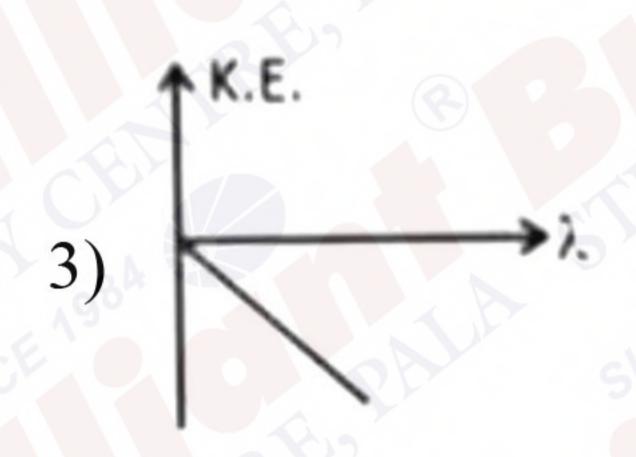
3) $a \rightarrow s$; $b \rightarrow p$; $c \rightarrow r$; $d \rightarrow q$

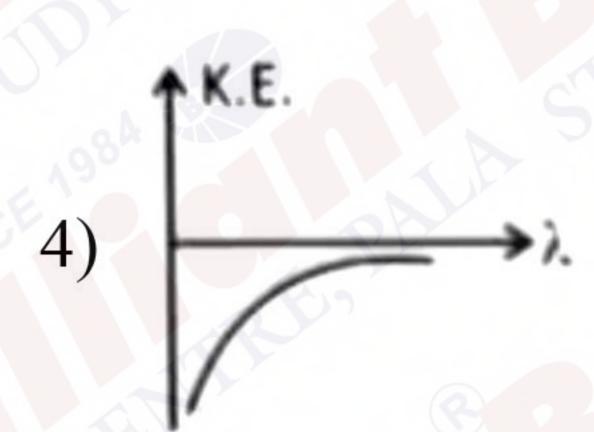
4) $a \rightarrow r$; $b \rightarrow q$; $c \rightarrow s$; $d \rightarrow p$

QN Hexa-1,3-dien-5-yne how many sigma and pi bonds in the given compound

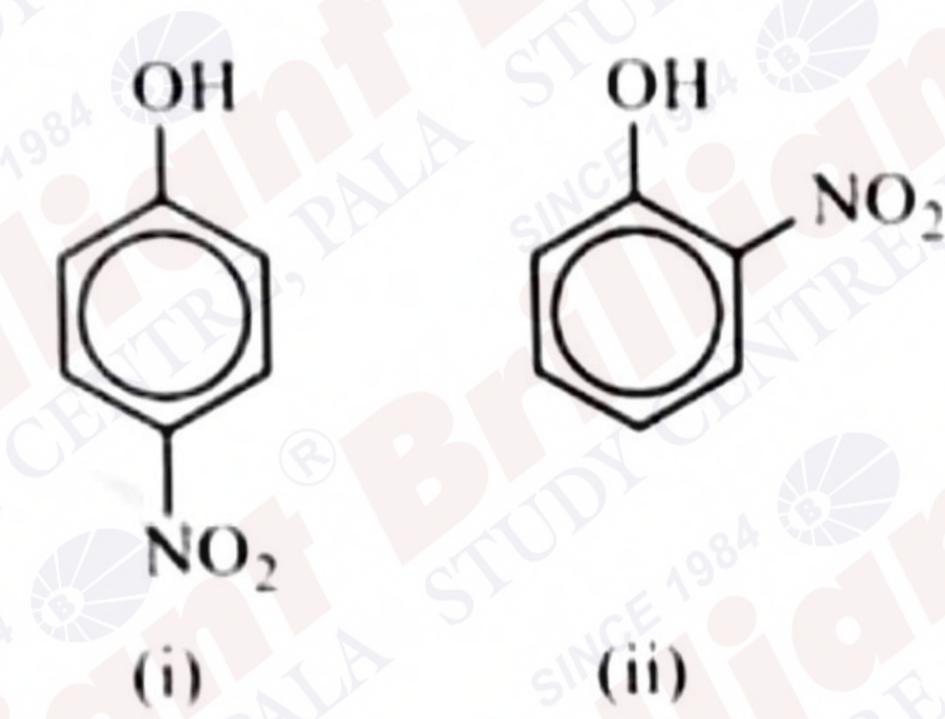

QN

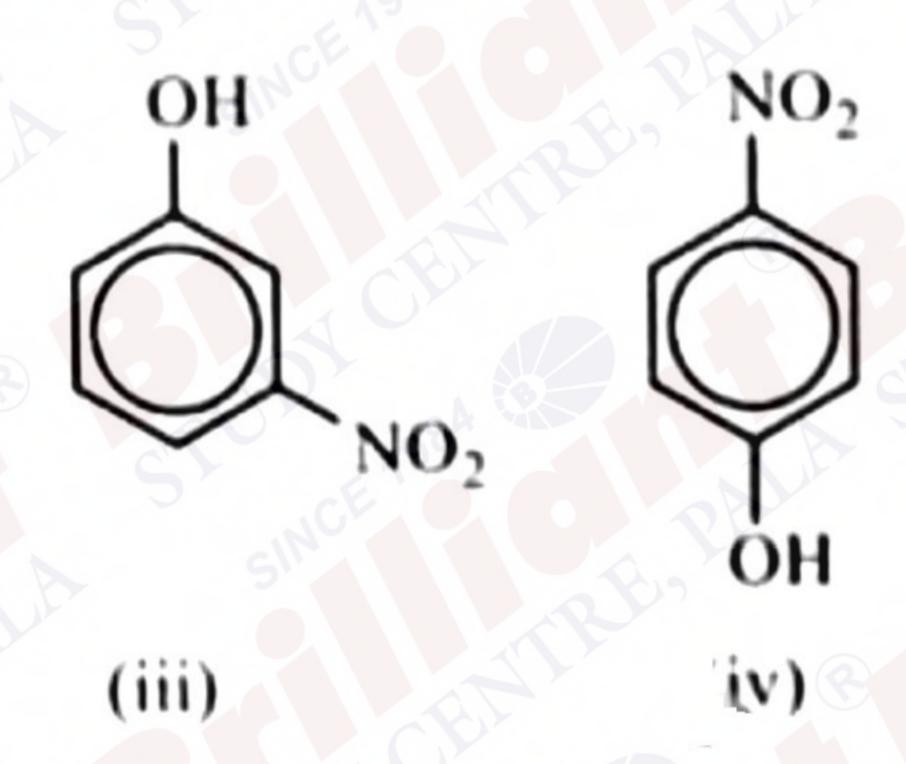

$$\begin{array}{c|c}
Br \\
& \xrightarrow{C_2H_5O^-Na^+} \\
\hline
NO_2
\end{array}$$


2)
$$\bigcirc$$
 Br NO₂


3)
$$OEt$$
 NO_2

The graph between wavelength of incident light and kinetic energy of photoelectrons in photoelectric effect is





Which of the following is steam volatile?

Statement-I : Correct order of ionic radius for Mg^{2+} , Na^+ , O^{2-} and F^- is $F > O^{2-} > Na^+ > Mg^{2+}$

Statement-II: Correct order of magnitude of gain enthalpy for 17th group follows order Cl > F > Br > I (Magnitude only)

- 1) Both statement-I and statement-II are correct
- 2) Statement-I is correct & statement-II is incorrect
- 3) Both statement-I & statement-II are incorrect
- 4) Statement-I is incorrect & statement-II is correct

Chromite ore $+ \text{Na}_2\text{CO}_3 + \text{O}_2 \rightarrow \text{insoluble product containing Fe. Calculate the molar mass of insoluble product formed. (Given: Molar mass of <math>\text{Cr} = 52\text{g/mol}$, Na = 23 g/mol, Fe = 56 g/mol, O = 16 g/mol)

What is the value of van't Hoff factor for A₂B is 30% of A₂B is dissociated?

1) 1.60

QN

- 2) 1.30
- 3) 1.50
- 4) 1.20

- A) $[Co(OX)_3]^{3-}$
- i) sp³d²
- B) [FeF₆]³⁻
- ii) d^2sp^3
- C) $[Ni(CO)_4]$
- iii) dsp²
- D) [PtCl₄]²⁻
- iv) sp³
- 1) $A \rightarrow i$; $B \rightarrow ii$; $C \rightarrow iii$; $D \rightarrow iv$
- 2) $A \rightarrow ii$; $B \rightarrow i$; $C \rightarrow iii$; $D \rightarrow iv$
- 3) $A \rightarrow i$; $B \rightarrow ii$; $C \rightarrow iv$; $D \rightarrow iii$
- 4) $A \rightarrow ii$; $B \rightarrow i$; $C \rightarrow iv$; $D \rightarrow iii$
- Find the order of the reaction $A+B\rightarrow F$.

If the mechanism of the reaction is given below

Step-I: $A + B \rightarrow D$ (Slow)

Step-2: $D \rightarrow C + E$ (Fast)

Step-3: $C + E \rightarrow F$ (fast)

1) 1

QN

QN

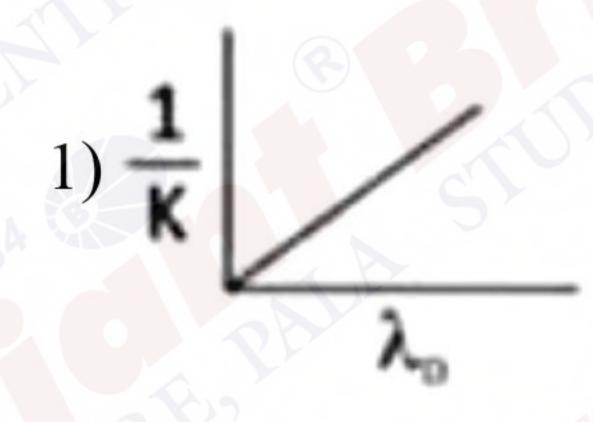
QN

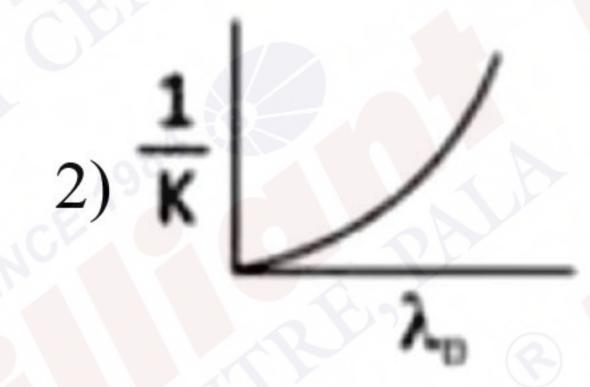
2) 3

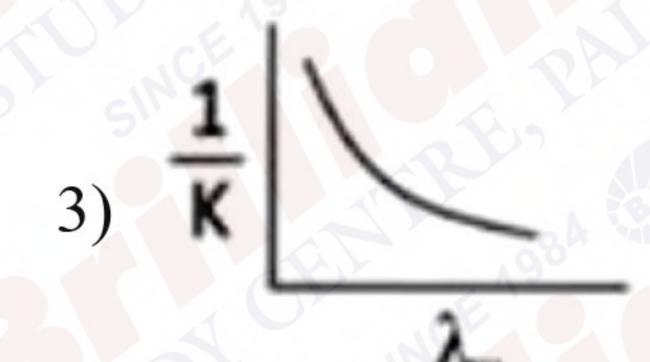
3) 2

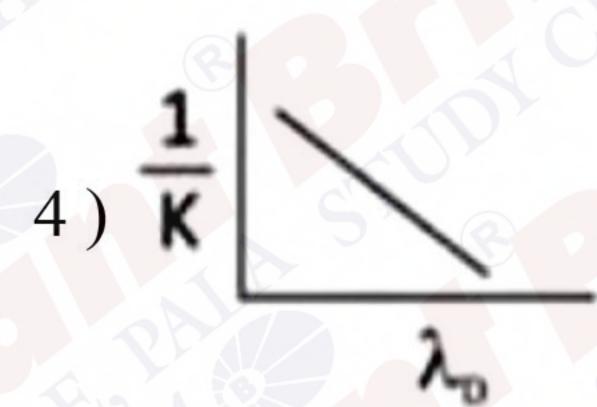
4) 4

Given ionisation enthalpy of element E_(g) is 300 kJmol and electron gain enthalpy of A, B, C and D gases atoms are -320 kJ/mol, -340 kJ/mol, -200 kJ/mol and -250 kJ/mol, then what will be the correct order of ionic nature of compounds?


1) EB > EA > ED > EC


2) EB > EA > EC > ED


3) EC > ED > EA > EB


4) EC > ED > EB > EA

On Graph between de-Broglie wavelength (λ_D) and kinetic energy (K) of an electron is

 $\wedge_{\rm m}$ is directly proportional to \sqrt{c} for an electrolyte, then molar conductance for the same electrolyte

at infinite dilution shows

- 1) Small increase
- 2) Small decrease
- 3) Sharp increase
- 4) Sharp decrease

The correct order of melting point of d-block element is

- 1) Fe > Mn
- 2) Tc > Ru
- 3) Os > Re
- 4) Ta > W

What is the correct Nernst equation representation for the following cell reaction

$$Mg(s) \rightarrow Mg^{2+} + 2e^{-}$$

$$Ag^+ + e^- \rightarrow Ag(s)$$

1)
$$E_{cell} = E_{cell}^{0} - \frac{RT}{nF} ln \frac{\left[Mg^{2+}\right]}{\left[Ag^{+}\right]^{2}}$$

2)
$$E_{cell} = E_{cell}^{0} - \frac{RT}{nF} ln \frac{\left[Ag^{+}\right]^{2}}{\left[Mg^{2+}\right]}$$

3)
$$E_{cell} = E_{cell}^{0} + \frac{RT}{nF} ln \frac{\left[Mg^{2+}\right]}{\left[Ag^{+}\right]}$$

4)
$$E_{cell} = E_{cell}^{0} + \frac{RT}{nF} ln \frac{\left[Ag^{+}\right]^{2}}{\left[Mg^{2+}\right]}$$

QN Consider the following reaction

Find the mass of final product (D) formed in gm(nearest integer)

29-01-2025

SHIFT 1-MORNING

MEMORY BASED QUESTIONS

MATHEMATICS

Ph - 04822 206416, 206516, 206459 www.brilliantpala.org

The minimum value of n for which the number of integer terms in the binomial expansion of $\left(7^{\frac{1}{3}} + 11^{\frac{1}{2}}\right)$ is 183 is

$$80 \int_{0}^{\frac{\pi}{2}} \frac{\sin x + \cos x}{9 + 16 \sin 2x} dx$$

on
$$\vec{a} = 2i - j + 3k, \vec{b} = 3i - 5j + k$$
, if $\vec{a} \times \vec{c} = \vec{c} \times \vec{b}$ and $(\vec{a} + \vec{c}) \cdot (\vec{b} + \vec{c}) = 168$ then $|c|^2 = 168$

QN
$$L_1 = \frac{x-1}{1} = \frac{y-2}{-1} = \frac{3-1}{2}$$
, $L_2 = \frac{x+1}{-1} = \frac{y-2}{2} = \frac{3}{1}$ set the line L3 passes through the point (α, β, γ)

perpendicular to L_1 and L_2 and L_3 intersect line L_1 , then $\left|5\alpha-11\beta-8\gamma\right|$ is

$$\lim_{n \to \infty} n \sum_{k=1}^{n} \frac{k^3 + 6k^2 + 11k + 5}{(k+3)!}$$
 is equal to

- Sum of 1st 3 terms of an AP with integral common difference is 54 and sum of first 20 terms lies between 1600 to 1800, find a₁₁
- On Area enclosed by $y \ge |x-1|, y+|x| \le 3, x^2 \le 2y-3$ is A then 6A is
- QN $|z_1 8 2i| \le 1$ and $|z_2 6 + 8i \le 2|$ then minimum value of $|z_1 z_2|$ is equal to
- If R be a relation defined on $\left(0, \frac{\pi}{2}\right)$ such that $xRy \Rightarrow \sec^2 x \tan^2 y = 1$ then the relation is
- Number of 7 digit numbers made with the digits 1,2,3 such that sum of the digits is 11 is equal to
- If $\cos^{-1} x = \pi + \sin^{-1} x + \sin^{-1} (2x 1)$, then find the sum of all values of x
- The minimum value of P such that $\lim_{x\to 0^+} x \left[\left(\frac{1}{x} \right) + \left(\frac{2}{x} \right) + \dots + \left(\frac{P}{x} \right) \right] 1$

$$x^2 \left[\left(\frac{1}{x^2} \right) + \left(\frac{2}{x^2} \right) + \dots + \left(\frac{9}{x^2} \right) \right] \ge 1$$
 is equal to

1) 79

2) 78

3)80

4) 76

If α, β are real numbers such that $\sec^2(\tan^{-1}\alpha) + \csc^2(\cot^{-1}\beta) = 36$ and $\alpha + \beta = 8$, QN where $\alpha > \beta$, then $(\alpha^3 + \beta^3)$ is equal to

How many 6 letter words can be formed using the word "MATHS" such that any letter can be used maximum two times?

1) 6400

QN

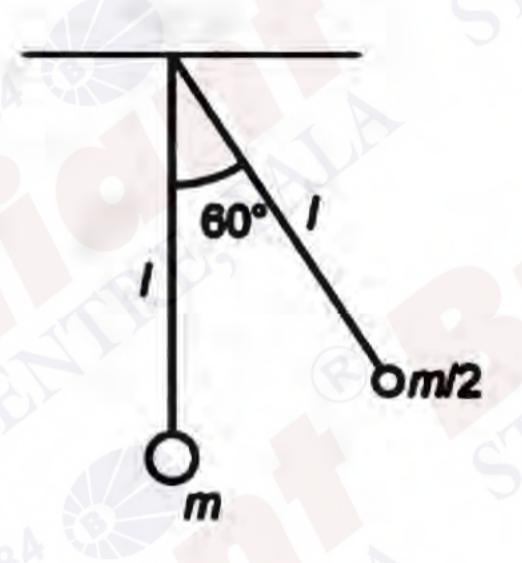
QN

2) 8100 3) 10000 4) 9824

A triangle is formed by three lines 2x + 3y - 5 = 0, x + y - 1 = 0, 3x + 4y - 7 = 0. Let (h,k) be the image of the centroid of $\triangle ABC$ in the line 2x + 4y - 7 = 0, then $h^2 + k^2 + hk$ is

1) $\frac{903}{225}$

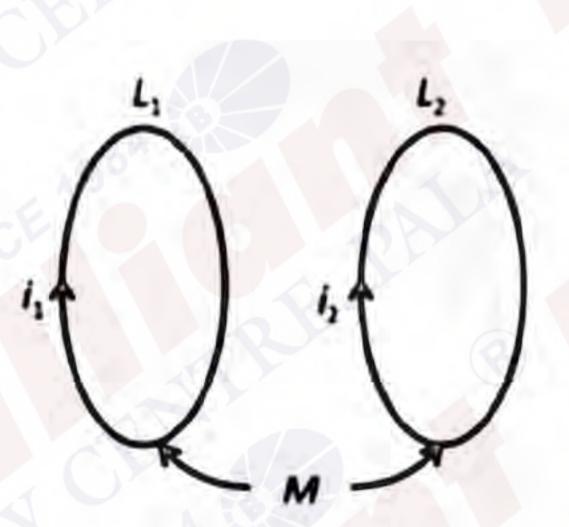
2) $\frac{223}{225}$ 3) $\frac{100}{23}$ 4) $\frac{10006}{225}$


Two parabolas having common focus at (4,3) intersect at points A and B. Find the value of QN (AB)², given that directrices of these parabolas are along X - axis and Y - axis respectively

www.brilliantpala.org

MEMORY BASED QUESTIONS

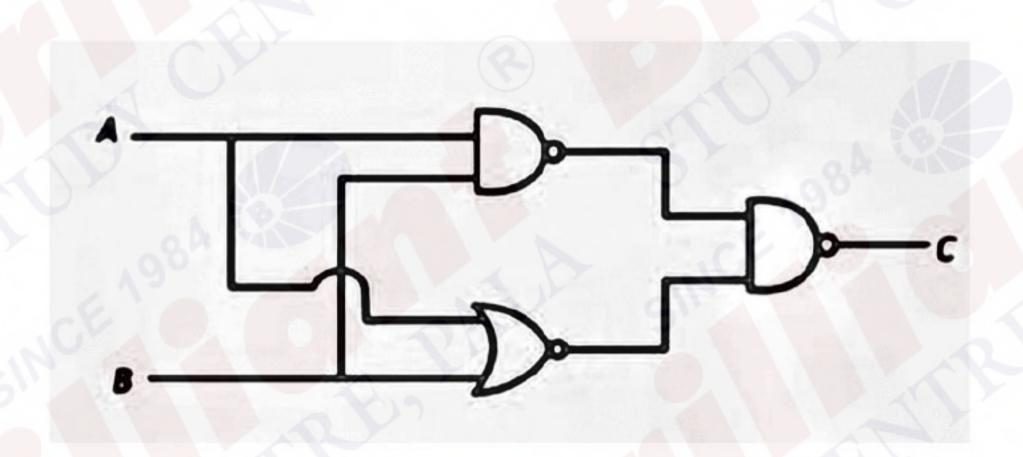
PHYSICS


- Assertion: At the peak of mountain, time period of pendulum increases QN Reason: Time period of pendulum increases with decrease in g.
 - 1) Assertion is correct, Reason is correct
 - 2) Assertion is incorrect, Reason is correct
 - 3) Assertion is incorrect, Reason is incorrect
 - 4) Assertion is correct, Reason is correct
- The velocity of a particle moving on a straight line varies with time as $v = v = At^2 + \frac{Bt}{C + t^2}$, QN where, A, B, C are constants. Find the dimension of ABC
 - 1) L^2T^{-2}
- B) Lt^2T^{-1}
- C) L^2T^{-3}
- D) LT⁻³
- A pendulum of mass $\frac{m}{2}$ is released from given situation. Find speed of another pendulum **ON** after collision. (e =1)

- 2) $\frac{2}{3}\sqrt{gl}$

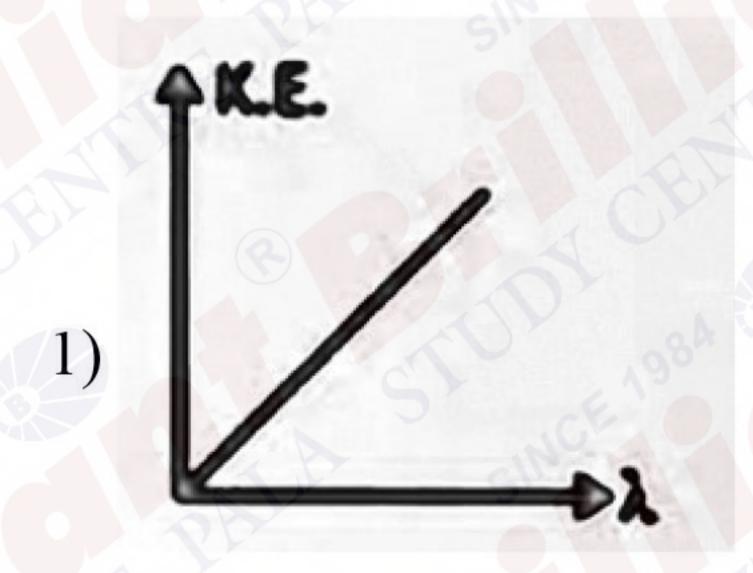
- Two coils having self inductance L₁ and L₂ are placed closely such that they have a mutual QN inductance M. If the carry currents i, and i, as shown in the figure than the induced emf in coil 1 is

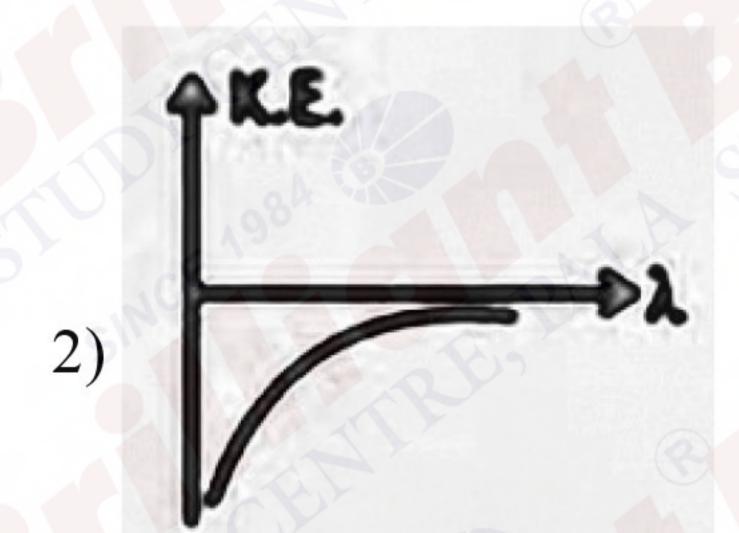
 - 1) $-L_{1}\left(\frac{dl_{1}}{dt}\right) + M\left(\frac{dl_{2}}{dt}\right)$ 2) $-L_{1}\left(\frac{dl_{1}}{dt}\right) M\left(\frac{dl_{2}}{dt}\right)$
 - 3) $-L_1\left(\frac{dl_2}{dt}\right) + M\left(\frac{dl_1}{dt}\right)$
 - 4) $-L_1\left(\frac{dl_2}{dt}\right)-M\left(\frac{dl_1}{dt}\right)$

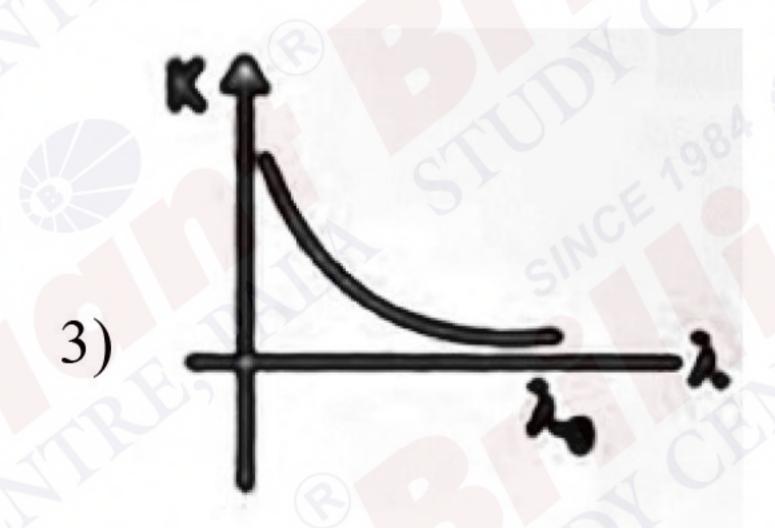

- Two projectiles were launched from same position simultaneously only same speed on of QN the projectile was launched at angle $(45 - \alpha)^{\circ}$ and the other at an angle of $(45 + \alpha^{\circ})$. Find the ratio of maximum height of the projectile.
 - 1) $\frac{1-\sin\alpha}{1+\sin\alpha}$
- 3) $\frac{1-\tan\alpha}{1+\tan\alpha}$

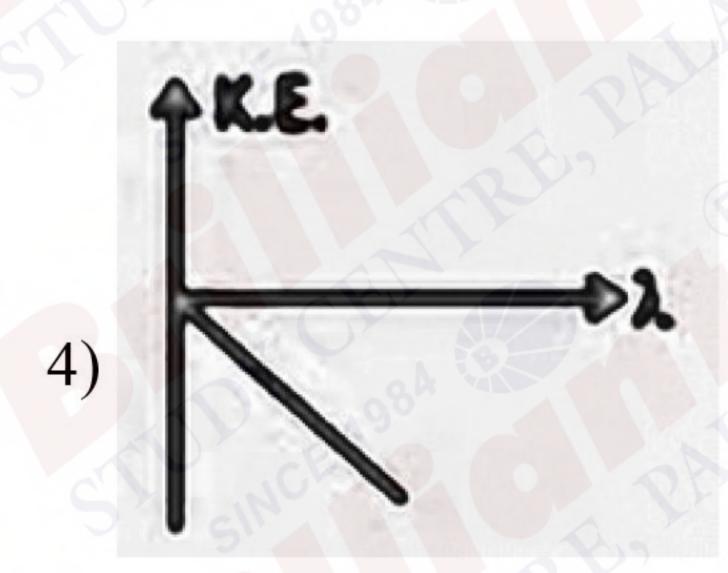
- 1) 10m
- 2) 20m
- 3) 25m
- 4) $20\sqrt{3}$ m

QN Which of the two physical quantities have same dimensions?\


- 1) Angular momentum and Planck's constant
- 2) Torque and moment of inertia
- 3) Impulse and surface tension
- 4) Momentum and work done


QN Identify the logic gate represented by the circuit shown below.




- 1) OR gate
- 2) NAND gate
- 3) AND gate
- 4) NOR gate

The graph between wavelengths (λ) of incident light and kinetic energy (K. E) of photoelectrons in photoelectric effect is

QN Statement 1: Electromagnetic wave have both energy and momentum

Statement 2: Rest mass of photon is zeo

- 1) Statement 1 is correct, Statement 2 is correct
- 2) Statement 1 is correct, Statement 2 is incorrect
- 3) Statement 1 is incorrect, Statement 2 is correct
- 4) Statement 1 is incorrect, Statement 2 is incorrect

QN	If the radius of first Bohr's orbits of H-atom is a ₀ Then find the radius of 2 nd Bohr's orbit of H- atom			
	1) 8a ₀	2) 4a ₀	3) 2a ₀	4) $6\pi a_0$
QN	Assertion: A negative potential is required to stop the photoelectron			
	Reason: Speed of electron decreases when a negative potential is applied in a photo cell			
	1) Assertion is correct but Reason is false			
	2) Assertion is correct and Reason is also correct			
	3) Assertion is false but Reason is correct			
	4) Assetion is false and Reason is also false			
QN	Heat given to 0.5 moles of a monoatomic gas at constant pressure is 500J. Initial temperature of gas was 27°C. Find value of ΔV and ΔT .			
	1) 300J, 48°C	2) 150J, 24°C	3) 180J,16°C	4) 210J,18°C
QN	An infinite solid cylindrical wire of radius R carries a current I uniformly distributed along			
	its area. The distance from the centre where the magnetic field is equal to $\frac{\mu_0 l}{4\pi R}$ is			
	1) R/2	2) R	3) 4R	4) Zero
QN	When ball is kept under sea at depth 2.5km. Find the percentage change in it's volume. If bulk modulus of water is 2×10^9 Pa.			
	1) 2%	2)15%	3) 1.25%	4) 2.75%