SCREENING TEST ANSWER KEY

SECTION A - PHYSICS

1. When a ball is thrown in the condition of negligible air resistance then its total energy.
1) Remains constant
2) Decreases
3) Increases
4) Becomes zero at the highest point of its journey

Ans: 1
Gravity is conservative force. \therefore Total energy is conserved
2. Two objects of masses 10 kg and 50 kg are moving along the same line and direction with momenta o
$4 \mathrm{kgm} / \mathrm{s}$ and $2 \mathrm{kgm} / \mathrm{s}$ respectively. Ratio of their kinetic energies is

1) $2: 5$
2) $20: 1$
3) $3: 5$
4) $1: 10$

Ans: 2

$$
\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{\mathrm{P}_{1}^{2}}{2 \mathrm{~m}_{1}} \frac{2 \mathrm{~m}_{2}}{\mathrm{P}_{2}^{2}}=\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}\left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)^{2}=\frac{50}{10} \times\left(\frac{4}{2}\right)^{2}=20
$$

3. The electrical resistivity of the material of conductor is ρ. If the applied voltage becomes twice the initial value, then the resistivity of the material of the conductor is
1) 2ρ
2) $\frac{\rho}{2}$
3) $\frac{\rho}{3}$
4) ρ

Ans: 4
Resistivity depends only the nature of the material
4. In which direction does the net force act?

1) north
2) east
3) west
4) south

Ans: 3
5. The normal force experienced by a surface of area $2 \mathrm{~cm}^{2}$ is 10 N . The pressure acting on the surface is

1) $5 \mathrm{Nm}^{-2}$
2) $5 \times 10^{3} \mathrm{Nm}^{-2}$
3) $5 \times 10^{2} \mathrm{Nm}^{-2}$
4) $5 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$

Ans: 4

$$
\text { Pr essure } \mathrm{P}=\frac{\mathrm{F}}{\mathrm{~A}}=\frac{10}{2 \times 10^{-4}}=5 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}
$$

6. A particle of mass 2 kg is moving with a constant velocity of $5 \mathrm{~m} / \mathrm{s}$. The net force acting on the particle is
1) 2.5 N
2) Zero
3) 10 N
4) 5 N

Ans: 2
Velocity is constant \therefore net force is zero
7. What is the maximum value of resistance which can be made by connecting 3 resistors each of 5Ω ?

1) 15Ω
2) 25Ω
3) 30Ω
4) 75Ω

Ans: $1 \quad$ Resistance is maximum in series combination $\therefore \mathrm{R}_{\max }=3 \times 5=15 \Omega$
8. From a height h , a body has a free fall to the surface of the earth. After it has fallen a height $\mathrm{h} / 2$, the body possesses:

1) Both potential energy and kinetic energy, where potential energy is greater than kinetic energy
2) Equal amounts of potential energy and kinetic energy
3) Only kinetic energy
4) Both potential energy and kinetic energy, where kinetic energy is greater than potential energy

Ans: 2 Decrease in P.E $=\mathbf{m g h}-\frac{\mathrm{mgh}}{2}=\frac{\mathrm{mgh}}{2}$
From conservation of energy, K.E. $=$ decrease in P.E. \therefore K.E. $=\frac{\mathrm{mgh}}{2}$
9. When a body becomes negatively charged, its mass

1) Decreases
2) Increases
3) Remains the same
4) First increases then decreases

Ans: $2 \quad$ Negative charging is the addition of electrons. \therefore mass will increase
10. In an ac generator, mechanical energy is converted into

1) electrical energy
2) magnetic energy
3) light energy
4) sound energy

Ans: 1
11. If velocity of the object is negative and acceleration is positive, then the speed of the object

1) will increase
2) may increase or decrease
3) will decrease
4) will first increase and then decrease

Ans: 3
12. Speed of sound wave through air

1) is directly proportional to absolute temperature
2) is directly proportional to square root of pressure, at constant temperature

3) is directly proportional to square root of absolute temperature
4) is independent of temperature

Ans: $3 \quad$ Velocity of sound $\mathrm{V} \alpha \sqrt{\mathrm{T}}$; Where $\mathrm{T}=$ temperature in Kelvin
13. A concave mirror of focal length f produces an image n times the size of the object. If the image is virtual, the distance of the object from the mirror is

1) $(\mathrm{n}-1) \mathrm{f}$
2) $(\mathrm{n}+1) \mathrm{f}$
3) $\frac{(n+1) f}{n}$
4) $\frac{(n-1) f}{n}$

Ans: 4
$m=\frac{f}{f-u} ; n=\frac{-f}{-f-u},-n f-n u=-f ; n f+n u=f ; n u=f-n f ; u=\frac{f(1-n)}{n}=\frac{-f(n-1)}{n}$
14. Find the value of current ' i ' in the circuit shown in the figure.

1) 0.1 A
2) 0.2 A
3) 1 A
4) 0.5 A

Ans: 1
Effective resistance $R=60 \Omega$ parallel 30Ω
$\mathbf{R}=\frac{60 \times 30}{90}=20 \Omega ; \mathbf{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{2}{20}=0.1 \mathrm{~A}$
15. CGS unit of force is

1) newton
2) kgms^{-2}
3) dyne
4) erg

Ans: 3

SECTION B - PHYSICS

16. Speed time graph of a body is given below

The distance travelled by the body in 12 second will be: (Answer should be in meter)
Ans: 32
Area under the graph $=$ distance travelled $S=\frac{1}{2}[4+12] 4=32$
17. Radius of curvature of a concave mirror is 30 cm . Magnitude of focal length of the mirror in a liquid of refractive index 1.5 is: [Answer should be in cm]
Ans: 15
$f=\frac{R}{2}=\frac{30}{2}=15 \mathrm{~cm}$; Focal length of mirror is independent of the medium
18. What will the value of R in ohm in the following electric circuit?

Ans: 6

$(2+R)$ is parallel to $4 \Omega . \therefore(2+R) I=4 \times 2 I ; R=8-2=6 \Omega$
19. A man of mass 20 kg stands in a lift. The force exerted by the man on the floor of the lift in newton when the lift starts moving downward, with an acceleration of $3 \mathrm{~m} / \mathrm{s}^{2} \cdot\left[\mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}\right]$
Ans: $140 \quad \mathrm{~N}=\mathbf{m}(\mathrm{g}-\mathrm{a})=\mathbf{2 0}[10-3]=140 \mathrm{~N}$
20. A particle of mass 2 kg is moving with a velocity of $8 \mathrm{~m} / \mathrm{s}$. The K.E. of the particle in joule is

Ans: 64

$$
\mathrm{K}=\frac{\mathrm{mv}^{2}}{2}=\frac{2}{2} \times 8^{2}=64 \mathrm{~J}
$$

21. If a planet consists of a satellite whose mass is half the mass of the earth and radius is one fourth the radius of the earth, then the acceleration due to gravity at its surface is n times that at the earth's surface. The value of n is

Ans: 8

$$
\mathrm{g}_{\mathrm{e}}=\frac{\mathrm{GM}}{\mathrm{R}^{2}} ; \mathrm{g}_{\mathrm{p}}=\mathrm{G} \frac{\mathrm{M}}{2\left(\frac{\mathrm{R}}{4}\right)^{2}}=8 \frac{\mathrm{GM}}{\mathrm{R}^{2}}=8 \mathrm{~g}_{\mathrm{e}}
$$

22. A ray of light is incident on a plane mirror with an angle of incidence 60°. The angle made by the reflected ray with the plane of the mirror in degree is

Ans: 30

23. A particle has a displacement of 3 m under the action of a force of 10 N . The angle between the force and the normal to the displacement is 30°. Work done by the force in joule is

Ans: 15

$$
\mathrm{W}=\mathrm{FS} \cos \theta=10 \times 3 \times \cos (90-30)=10 \times 3 \times \frac{1}{2}=15 \mathrm{~J}
$$

24. A body of mass 100 kg and density $500 \mathrm{~kg} / \mathrm{m}^{3}$ floats in water. The additional mass in kg should be added to the body so that the body will sink is [density of water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$]

Ans: 100

$$
\begin{aligned}
& {[100+\mathrm{m}] \mathrm{g}=\text { upthrust }=\mathrm{V} \rho \mathrm{~g}} \\
& {[100+\mathrm{m}] \mathrm{g}=\left(\frac{100}{500}\right) \times 10^{3} \times \mathrm{g}=100+\mathrm{m}=200 ; \mathrm{m}=100 \mathrm{~kg}}
\end{aligned}
$$

25. Two point masses at a given distance exert a gravitational interaction force on each other equal to F . If one mass is doubled, the other is halfed, and the distance between them is doubled the resulting interaction force is $\frac{F}{n}$. The value of n is

Ans: 4

$$
\mathrm{F}=\frac{\mathrm{Gm}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}} ; \mathrm{F}^{\prime}=\mathrm{G}\left(2 \mathrm{~m}_{1}\right)\left(\frac{\mathrm{m}_{2}}{2}\right) \frac{1}{(2 \mathrm{r})^{2}}=\frac{\mathrm{Gm}_{1} \mathrm{~m}_{2}}{4 \mathrm{r}^{2}}=\mathrm{F}^{\prime}=\frac{\mathrm{F}}{4}
$$

SECTION A-CHEMISTRY

26. Which among the following is not a redox reaction?
1) $\mathrm{CuO}_{(\mathrm{s})}+\mathrm{H}_{2(\mathrm{~g})} \xrightarrow{\text { heat }} \mathrm{Cu}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}$
2) $2 \mathrm{Cu}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \xrightarrow{\text { heat }} 2 \mathrm{CuO}_{(\mathrm{s})}$
3) $\mathrm{CaCO}_{3(\mathrm{~s})} \xrightarrow{\text { heat }} \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
4) $\mathrm{MnO}_{2(\mathrm{~g})}+4 \mathrm{HCl}_{\text {(aq) }} \longrightarrow \mathrm{MnCl}_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}+\mathrm{Cl}_{2(\mathrm{~g})}$

Ans: 3
Thermal decomposition of CaCO_{3} is not a redox reaction
27. Which of the following is/are not correct method(s) for separating the components of given mixtures?
i) Mixture of iodine and sodium chloride by sublimation
ii) Colours in a dye by chromatography
iii) Mixture of acetic acid and water by using separating funnel
iv) Oxygen, Argon and Nitrogen from liquid air by fractional distillation

1) i only
2) iii only
3) ii and iii
4) ii, iii and iv

Ans: $2 \quad$ Acetic acid and water are miscible liquids
28. Read the following statements:

Statement-I : Sodium metal reacts violently with water to produce heat and fire.
Statement-II : Potassium metal reacts violently with water to form potassium hydroxide and hydrogen gas

Select the correct answer from the options given below

1) Statement-I is true but Statement-II is false
2) Statement-I is false but Statement-II is true
3) Both Statements are true and Statement-II provides explanation to Statement-I
4) Both Statements are true but Statement-II does not provide explanation to Statement-I

Ans: $4 \quad$ Both are true statements. Statement-II is not an explanation to statement-I
29. Baking powder is a mixture of

1) Sodium hydrogen carbonate and oxalic acid
2) Sodium carbonate and tartaric acid
3) Sodium carbonate and oxalic acid
4) Sodium hydrogen carbonate and tartaric acid

Ans: 4 Baking powder is a mixture of baking soda and mild edible acid such as tartaric acid
30. Sulphur is burnt in a spatula. Moist blue and red litmus papers are brought one by one to the gas evolved during burning. The action of gas on the moist litmus papers will be

1) No change in colour in both litmus papers
2) Blue litmus paper becomes red
3) Red litmus paper becomes blue
4) Blue litmus paper turns black
Ans: 2
SO_{2} gas in acidic - blue litmus paper is turned red
31. Match "chemical reactions" given in List-I with "type of chemical reactions" given in List-II

List-I (Chemical reactions)	List-II (Type of chemical reaction)
A) Formation of NH_{3} from N_{2} and H_{2}	I) Decomposition
B) Calcination of Zinc Carbonate	II) Double displacement
C) Reaction of aqueous BaCl_{2} with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$	III) Combination
D) Rancidity of oils	IV) Redox
	V) Displacement

Select the correct answer using options given below

1) $\mathrm{A} \rightarrow$ III; $\mathrm{B} \rightarrow \mathrm{I} ; \mathrm{C} \rightarrow \mathrm{II} ; \mathrm{D} \rightarrow \mathrm{IV}$
2) $\mathrm{A} \rightarrow \mathrm{III} ; \mathrm{B} \rightarrow \mathrm{IV} ; \mathrm{C} \rightarrow \mathrm{V} ; \mathrm{D} \rightarrow \mathrm{I}$
3) $\mathrm{A} \rightarrow \mathrm{IV} ; \mathrm{B} \rightarrow \mathrm{III} ; \mathrm{C} \rightarrow \mathrm{V} ; \mathrm{D} \rightarrow \mathrm{I}$
4) $\mathrm{A} \rightarrow \mathrm{I} ; \mathrm{B} \rightarrow \mathrm{V} ; \mathrm{C} \rightarrow \mathrm{III} ; \mathrm{D} \rightarrow \mathrm{IV}$

Ans: 1
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}:$ Combination
$\mathrm{ZnCO}_{3} \longrightarrow \mathrm{ZnO}+\mathrm{CO}_{2}:$ Decomposition
$\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}:$ Double displacement
Rancidity of oils : Redox reaction
32. Which of the following are exothermic process?
i) reaction of water with quick lime
ii) dilution of an acid
iii) evaporation of water
iv) sublimation of comphor

1) i and ii
2) ii and iii
3) i and iv
4) iii and iv

Ans: 1 Reaction of water with CaO and dilution of acid are exothermic
33. Silver articles become black on exposure to air for longer time, because of the formation of coating of

1) Silver carbonate $\left(\mathrm{Ag}_{2} \mathrm{CO}_{3}\right)$
2) Silver oxide $\left(\mathrm{Ag}_{2} \mathrm{O}\right)$
3) Silver sulphide $\left(\mathrm{Ag}_{2} \mathrm{~S}\right)$
4) Silver cyanide (AgCN)

Ans: $3 \quad$ Tarnishing of silver is due to formation of $\mathrm{Ag}_{2} \mathrm{~S}$
34. Which one of the following four metals would be displaced from the solution of its salts by other three metals?

1) Mg (Magnesium)
2) Cu (Copper)
3) Zn (Zinc)
4) Fe (Iron)

Ans: 2
Copper is the least reactive metal. The reactivity order is $\mathbf{M g}>\mathbf{Z n}>\mathbf{F e}>\mathbf{C u}$
35. If refining of impure copper containing zinc impurity is to be done by electrolysis, the anode and cathode employed would be respectively

1) Pure zinc, pure copper
2) Pure copper, pure zinc
3) Impure copper, pure copper
4) Impure zinc, pure zinc

Ans: 3 In electrolytic refining of metals impure metal is made the anode and pure metal is made the cathode
36. Scattering of a beam of light is shown by

1) Sugar solution
2) Milk
3) NaCl solution
4) Dilute sulphuric acid

Ans: $2 \quad$ Milk is a colloid
37. 22 carat gold means

1) 20 parts of pure gold alloyed with 2 parts of Cu or Ag
2) 22 parts of pure gold alloyed with 2 parts of Cu or Zn
3) 21 parts of pure gold alloyed with 1 part of Cu or Ag
4) 22 parts of pure gold alloyed with 2 parts of Cu or Ag

Ans: 4
22 Carat gold is an alloy of 22 parts pure gold and 2 parts Cu or Ag
38. Which among the following is chemically the most active non metal?

1) Bromine (Br)
2) Nitrogen (N)
3) Oxygen (O)
4) Fluorine (F)

Ans: 4
Fluorine is the most reactive non metal
39. In the balanced chemical equation:
a lead nitrate $+\mathbf{b}$ Aluminium chloride $\rightarrow \mathbf{c}$ Aluminium nitrate $+\mathbf{d}$ Lead chloride .
Which among the following is the correct set of co-efficients $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d ?

1) $a=3, b=2, c=2, d=3$
2) $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=2, \mathrm{~d}=1$
3) $\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=2, \mathrm{~d}=3$
4) $a=4, b=3, c=3, d=4$

Ans: $1 \quad$ The balanced equation is $3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{AlCl}_{3} \rightarrow 2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{PbCl}_{2}$
40. When ferrous sulphate crystals $\left(\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}\right)$ are heated in a boiling tube over the flame of a burner, which among the following does not occur?

1) Oxygen $\left(\mathrm{O}_{2}\right)$ gas is produced
2) Sulphurdioxide $\left(\mathrm{SO}_{2}\right)$ gas is produced
3) Sulphurtrioxide $\left(\mathrm{SO}_{3}\right)$ gas is produced
4) Colour of crystals change

Ans: $1 \quad$ The reaction taking place is $2 \mathrm{FeSO}_{4(\mathrm{~s})} \xrightarrow{\text { heat }} \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+\mathrm{SO}_{2(\mathrm{~g})}+\mathrm{SO}_{3(\mathrm{~g})}$

SECTION B - CHEMISTRY

41. Consider the reaction $6 \mathrm{CO}_{2(\text { aq })}+\mathrm{yH}_{2} \mathrm{O}_{(\ell)} \xrightarrow[\text { chiliophyll }]{\text { Suligh }} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O}$. The number of moles of water (y) involved in the balanced equation is \qquad
Ans: 12 The balanced equation is
$6 \mathrm{CO}_{2(\text { aq })}+12 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{aq})}+6 \mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
42. In presence of sun light, Silver Bromide decomposes the same way as silver chloride. When exposed to sunlight how many moles of solid silver bromide is required to obtain one mole gaseous bromine $\left(\mathrm{Br}_{2}\right)$?

Ans: 2
The balanced equation for the decomposition is $2 \mathrm{AgBr}(\mathrm{s}) \xrightarrow{\text { sulight }} 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Br}_{2}(\mathrm{~g})$
43. How many of the following are olfactory acid base indicators?
i) Litmus
ii) Turmeric
iii) Methyl organge
iv) Clove oil
v) Phenolphthalein
vi) Petals of Hydrangeavii) Chopped onion
viii) Vanilla essence
ix) Red cabbage leaves

Ans: 3
Onion, vanilla and clove oil are olfactory indicators
44. How many of the following liberate CO_{2} gas when sodium bicarbonate is added?
i) Pure water
ii) Dilute hydrochloric acid
iii) Sodium hydroxide solution
iv) Lime water (Calcium hydroxide solution)
v) Sodium carbonate solution
vi) Vinegar

Ans: 2 dil. HCl and acetic acid liberate CO_{2} from NaHCO_{3}
45. How many families of salts can be identified in the given list of salts?
i) $\mathrm{K}_{2} \mathrm{SO}_{4}$
ii) NaCl
iii) KNO_{3}
iv) MgSO_{4}
v) NaNO_{3}
vi) MgCO_{3}
vii) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
viii) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
ix) KCl

Ans: 7
Family of salts of $\mathbf{K}, \mathbf{N a}, \mathbf{M g}$
Family of sulphate, chloride, nitrate and carbonate salts
46. 2 moles of gypsum is heated to 373 K to form plaster of paris. Assuming complete conversion of gypsum to plaster of paris, how many moles of water are liberated during the process?

Ans: 3

The reaction taking place is $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}+1 \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$
2 mol gypsum $\rightarrow \mathbf{3}$ moles of $\mathrm{H}_{2} \mathrm{O}$
47. 10 mL of a solution of NaOH is found to be completely neutralised by 8 mL of a given solution of HCl . If we take 20 mL of the same solution of NaOH , the amount of HCl solution (The same solution as before) required to neutralise it will be \qquad mL

Ans: 16
$10 \mathrm{~mL} \mathrm{NaOH} \equiv 8 \mathrm{~mL} \mathrm{HCl}$
$20 \mathrm{~mL} \mathrm{NaOH}=16 \mathrm{~mL} \mathrm{HCl}$
48. How many of the following conduct heat through them?
i) Silver (Ag)
ii) Lead (Pb)
iii) Mercury (Hg)
iv) Copper (Cu)

Ans: $4 \quad \mathrm{Ag}, \mathrm{Pb}, \mathrm{Hg}$ and Cu are all metals
49. "When added to dilute hydrochloric acid, no bubbles of H_{2} gas are seen to be formed and temperature of the mixture remains the same". This statement is true for how many elements among the following?
i) Magnesium (Mg)
ii) $\operatorname{Iron}(\mathrm{Fe})$
iii) Copper (Cu)
iv) $\mathrm{Zinc}(\mathrm{Zn})$
v) Silver (Ag)
vi) Mercugy (Hg)
vii) Aluminium (Al)

Ans: $3 \quad \mathrm{Cu}, \mathrm{Ag}$ and Hg cannot displace H_{2} gas from dilute HCl
50. You are given the three alloys; Brass, Bronze and Solder mixed together. How many different elements are present in the given mixture of alloys?

Ans: 4
Brass is alloy of $\mathrm{Cu} \& \mathrm{Zn}$
Bronze alloy of $\mathrm{Cu} \& \mathrm{Sn}$ and solder alloy of $\mathrm{Sn} \& \mathrm{~Pb}$

SECTIONA-MATHEMATICS

51. If the area of square inscribed in a semicircle is $4 \mathrm{~cm}^{2}$, then the area of the square inscribed in a full circle of the same radius is
1) $9 \mathrm{~cm}^{2}$
2) $10 \mathrm{~cm}^{2}$
3) $6 \mathrm{~cm}^{2}$
4) $8 \mathrm{~cm}^{2}$

Ans: 2
Area of $\mathrm{ABCD}=4 \Rightarrow \mathrm{AD}=2 ; \mathrm{O}$ is midpoint of $\mathrm{AB} . \therefore \mathrm{OA}=1 \Rightarrow \mathrm{OD}=\sqrt{5}=\mathrm{r}$.

$$
\text { If } \mathrm{r}=\sqrt{5}, \text { diameter }=2 \sqrt{5} .
$$

\therefore Diagonal of largest square inscribed in a circle of diameter $2 \sqrt{5}$ ie $2 \sqrt{5}$ itself.
\therefore Area $=\frac{1}{2} \mathrm{~d}^{2}=\frac{1}{2} \times 4 \times 5=10$
52. Consider a right triangle with sides a, b and hypotenuse c . If the altitude drawn to the hypotenuse ' c ' is k , then

1) $k^{2}=a b$
2) $k^{2}=a^{2}+b^{2}$
3) $\frac{1}{\mathrm{k}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$
4) $k=a+b$

Ans: 3

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} \mathrm{ab}=\frac{1}{2} \mathrm{ck} \\
& \mathrm{ck}=\mathrm{ab} \\
& \mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2} \\
& \therefore\left(\frac{\mathrm{ab}}{\mathrm{k}}\right)^{2}=\mathrm{a}^{2}+\mathrm{b}^{2} \Rightarrow \frac{1}{\mathrm{k}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}
\end{aligned}
$$

53. Value of $\frac{1}{\sqrt{32}-\sqrt{18}}+\frac{1}{\sqrt{98}-\sqrt{72}}$ is
1) $\frac{1}{\sqrt{2}}$
2) $\sqrt{2}$
3) $\frac{1}{2 \sqrt{2}}$
4) $2 \sqrt{2}$
Ans: 2

$$
\frac{1}{\sqrt{32}-\sqrt{18}}+\frac{1}{\sqrt{98}-\sqrt{72}}=\frac{1}{4 \sqrt{2}-3 \sqrt{2}}+\frac{1}{7 \sqrt{2}-6 \sqrt{2}}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}
$$

54. Base diameter of a cone is 12 cm and height 4 cm , then volume of the cone is
1) 48π
2) 64π
3) 12π
4) 46π

Ans: 1

$$
\mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}=\frac{1}{3} \pi \times 6 \times 6 \times 4=48 \pi
$$

55. If $\frac{x}{2}+\frac{y}{4}=4$ and $\frac{x}{3}+\frac{y}{2}=4$ then y is
1) 1
2) 2
3) 3
4) 4

Ans: 4

$$
\begin{aligned}
& \frac{x}{2}+\frac{y}{4}=4 \Rightarrow 2 x+y=16 \\
& \frac{x}{3}+\frac{y}{2}=4 \Rightarrow 2 x+3 y=24 \\
& \text { Solving } y=4, x=6
\end{aligned}
$$

56. Raju purchased a laptop of cost Rs. $45,000 /-$ and sold it by Rs. $50,000 /-$ after few days. Then the profit percentage of Raju is
1) 10%
2) 15%
3) $16 \frac{2}{3} \%$
4) $11 \frac{1}{9} \%$

Ans: 4
Cost price $=45000$
Sold price $=\mathbf{5 0 0 0 0}$
Profit $=50000-45000=5000$
$\%$ profit $=\frac{5000}{45000} \times 100=\frac{100}{9}=11 \frac{1}{9} \%$
57. If $\sin \mathrm{A}=\frac{1}{2}$, then the value of $\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}$ is

1) $\sqrt{3}$
2) $\frac{1}{\sqrt{3}}$
3) $\frac{1}{2}$
4) $\frac{3}{2}$

Ans: 3

$$
\begin{aligned}
& \sin \mathrm{A}=\frac{1}{2} \Rightarrow \mathrm{~A}=30^{\circ} \\
& \cos \mathrm{A}=\cos 30^{\circ}=\frac{\sqrt{3}}{2} \\
& \cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}=\frac{3}{4}-\frac{1}{4}=\frac{1}{2}
\end{aligned}
$$

58. If $\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}-\mathrm{x}+1$ then $\frac{\mathrm{P}(2)-\mathrm{P}(-2)}{\mathrm{P}(1)-\mathrm{P}(-1)}=$
1) 0
2) 2
3) 4
4) 5

Ans: 2

$$
\frac{\mathrm{P}(2)-\mathrm{P}(-2)}{\mathrm{P}(1)-\mathrm{P}(-1)}=\frac{(4-2+1)-(4+2+1)}{(1-1+1)-(1+1+1)}=2
$$

59. In the given figure, AD is the bisector of $\angle \mathrm{BAC}$. If $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$ and $\mathrm{BC}=21 \mathrm{~cm}$, find DC :

1) 4.5 cm
2) 9 cm
3) 7.5 cm
4) 12 cm

Ans: 2

Angle bisector of a triangle divide the opposite side in the ratio of other two sides.

$$
\begin{aligned}
& \therefore \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{8}{6}=\frac{4}{3} \\
& \therefore 1+\frac{\mathrm{BD}}{\mathrm{DC}}=1+\frac{4}{3} \Rightarrow \frac{\mathrm{BC}}{\mathrm{DC}}=\frac{7}{3} \\
& \therefore \frac{21}{\mathrm{DC}}=\frac{7}{3} \Rightarrow \mathrm{DC}=9
\end{aligned}
$$

60. The ratio of the total surface area to the lateral surface area of a cylinder with base radius 80 cm and height 20 cm is
1) $1: 2$
2) $2: 1$
3) $3: 1$
4) $5: 1$

Ans: 4
Total surface area $=2 \pi \mathrm{rh}+2 \pi \mathrm{r}^{2}=2 \pi \mathrm{r}(\mathrm{h}+\mathrm{r})$
Lateral surface area $=2 \pi \mathrm{rh}$
\therefore Ratio $=\frac{2 \pi \mathrm{r}(\mathrm{h}+\mathrm{r})}{2 \pi \mathrm{rh}}=\frac{\mathrm{h}+\mathrm{r}}{\mathrm{h}}=\frac{20+80}{20}=\frac{100}{20}=\frac{5}{1}$
Required ratio $=5: 1$
61. If $x+y=6, x^{2}+y^{2}=26, x^{3}+y^{3}=126$ then $x^{4}+y^{4}$ is

1) 626
2) 426
3) 326
4) 526

Ans: 1

$$
\begin{aligned}
& (x+y)^{2}=x^{2}+y^{2}+2 x y \\
& 6^{2}=26+2 x y \Rightarrow x y=5 \\
& \left(x^{2}+y^{2}\right)^{2}=x^{4}+y^{4}+2 x^{2} y^{2} \\
& 26^{2}=x^{4}+y^{4}+2\left(5^{2}\right) \\
& x^{4}+y^{4}=676-50=626
\end{aligned}
$$

62. Match the following (Use $\pi=\frac{22}{7}$)

I (Figures)	II (Required measure)	III
A)	I) Area	1) 154 units
	II) Perimeter	2) 44 units
C)	III) Circumference	3) 36 units

Then which among the following is true?

1) $\mathrm{A} \rightarrow \mathrm{I} \rightarrow 3 ; \mathrm{B} \rightarrow \mathrm{II} \rightarrow 1 ; \mathrm{C} \rightarrow \mathrm{III} \rightarrow 2$
2) $\mathrm{A} \rightarrow \mathrm{II} \rightarrow 4 ; \mathrm{B} \rightarrow \mathrm{II} \rightarrow 3 ; \mathrm{C} \rightarrow \mathrm{I} \rightarrow 1$
3) $\mathrm{A} \rightarrow \mathrm{II} \rightarrow 4 ; \mathrm{B} \rightarrow \mathrm{II} \rightarrow 4 ; \mathrm{C} \rightarrow \mathrm{III} \rightarrow 2$
4) $\mathrm{A} \rightarrow \mathrm{I} \rightarrow 1 ; \mathrm{B} \rightarrow \mathrm{I} \rightarrow 3 ; \mathrm{C} \rightarrow \mathrm{II} \rightarrow 2$

Ans: 3

$$
\text { Are of triangle }=\frac{\sqrt{3}}{4} \times 64=16 \sqrt{3}
$$

Perimeter of triangle $=3 \times 8=24$
Area of square $=6^{2}=36$
Perimeter of square $=4 \times 6=24$
Area of circle $=\pi r^{2}=\frac{22}{7} \times(7)^{2}=154$
Circumference $=\frac{2 \times 22}{7} \times 7=44$
$\mathrm{A} \rightarrow \mathrm{II} \rightarrow 4 ; \mathrm{B} \rightarrow \mathrm{II} \rightarrow 4 ; \mathrm{C} \rightarrow \mathrm{III} \rightarrow 2$ are true
63. Three semicircles with diameters AB, AC and AD are given as in the figure. If $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}$, then the ratio of the unshaded area to the shaded area is

1) $2: 1$
2) $2: 3$
3) $3: 1$
4) $1: 2$

Ans: 1
Let $A B=2 r \Rightarrow B C=2 r$ and $C D=2 r \therefore A C=4 r, A D=6 r$
Area of shaded region $=\frac{1}{2} \pi\left(\frac{\mathrm{AC}}{2}\right)^{2}-\frac{1}{2} \pi\left(\frac{\mathrm{AB}}{2}\right)^{2}=\frac{\pi}{2}\left[(2 \mathrm{r})^{2}-(\mathrm{r})^{2}\right]=\frac{3 \pi \mathrm{r}^{2}}{2}$
Area of unshaded region $=\frac{1}{2} \pi\left(\frac{\mathrm{AD}}{2}\right)^{2}-$ area of shaded region

$$
\begin{aligned}
& =\frac{1}{2} \pi(3 r)^{2}-\frac{3 \pi r^{2}}{2} \\
& =\frac{9 \pi}{2} r^{2}-\frac{3 \pi r^{2}}{2}=\frac{6}{2} \pi r^{2} \\
& \text { Required ratio }=\frac{\frac{6 \pi r^{2}}{2}}{\frac{3 \pi r^{2}}{2}}=2: 1
\end{aligned}
$$

64. A pair of natural numbers x, y satisfy the equation $\frac{7}{x}+\frac{6}{y}=1$, then the largest value of $x+y$ is
1) 65
2) 57
3) 56
4) 75

Ans: 3
$\frac{7}{x}+\frac{6}{y}=1 \Rightarrow 7 y+6 x=x y$
$x y-6 x-7 y=0 \Rightarrow x(y-6)-7 y+42=42$
$(y-6)(x-7)=42$
Now, $42=1 \times 42,2 \times 21,3 \times 14,6 \times 7$
$y-6=1 ; x-7=42 \Rightarrow y=7$ or $x=49$
$y-6=2 ; x-7=21 \Rightarrow y=8$ or $x=28$
$y-6=3 ; x-7=14 \Rightarrow y=9$ or $x=21$
$y-6=6 ; x-7=7 \Rightarrow y=12$ or $x=14$
\therefore Largest $\mathrm{x}+\mathrm{y}=7+49=56$
$y-6=1, x-7=42 \Rightarrow x+y-13=43 \Rightarrow x+y=56$ and

$$
y-6=42, x-7=1 \Rightarrow x+y-13=42 \Rightarrow x+y=56
$$

65. 10800 is expressed as $2^{\mathrm{a}} \times 3^{\mathrm{b}} \times 5^{\mathrm{c}}$ and 6480 is expressed as $2^{\mathrm{d}} \times 3^{\mathrm{e}} \times 5^{\mathrm{f}}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$ are positive integers. Then the remainder when 2024 is divided by $a+b+c+d+e+f$, is
1) 9
2) 10
3) 7
4) 8

Ans: 4

$$
\begin{aligned}
& 10800=2^{4} \times 3^{3} \times 5^{2} \\
& 6480=2^{4} \times 3^{4} \times 5^{1} \\
& a+b+c+c+d+e+f=4+3+2+4+4+1=18 \\
& \text { Now } 2024=112 \times 18+8
\end{aligned}
$$

$$
\therefore \text { remainder }=8
$$

SECTION B-MATHEMATICS

66. The value of $20 \tan ^{2} 45+18 \cos ^{2} 45$, is

Ans: 29

$$
20 \tan ^{2} 45+18 \cos ^{2} 45=20 \times 1^{2}+18 \times\left(\frac{1}{\sqrt{2}}\right)^{2}=20+18 \times \frac{1}{2}=20+9=29
$$

67. If the arithmetic mean of $15,17,19, x$ is 16 then the value of x, is

Ans: 13

$$
\frac{15+17+19+x}{4}=16 \Rightarrow 51+x=64 ; x=13
$$

68. $\left(3 x+\frac{1}{2 x}\right)^{2}-\left(3 x-\frac{1}{2 x}\right)^{2}$ is

Ans: 6

$$
\begin{aligned}
& (a+b)^{2}-(a-b)^{2}=4 a b \\
& \left(3 x+\frac{1}{2 x}\right)^{2}-\left(3 x-\frac{1}{2 x}\right)^{2}=4 \times 3 x-\frac{1}{2 x}=6
\end{aligned}
$$

69. Least common multiple of $\frac{1}{5}$ and $\frac{2}{3}$ is

Ans: 2

$$
\text { Multiples of } \frac{1}{5} \text { are } \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{5}{5}, \frac{6}{5}, \frac{7}{5}, \frac{8}{5}, \frac{9}{15}, \frac{10}{5} \ldots \ldots
$$

Multiples of $\frac{2}{3}$ are $\frac{2}{3}, \frac{4}{3}, \frac{6}{3}, \frac{8}{3}$.
$\therefore \frac{10}{5}=2$ and $\frac{6}{3}=2 \therefore$ Least common multiple is 2
OR
LCM of $\left\{\frac{\mathrm{a}}{\mathrm{b}}, \frac{\mathrm{c}}{\mathrm{d}}\right\}=\frac{\operatorname{LCM}\{\mathrm{a}, \mathrm{c}\}}{\operatorname{HCF}\{\mathrm{b}, \mathrm{d}\}}=\frac{\operatorname{LCM}\{1,2\}}{\operatorname{HCF}\{3,5\}}=\frac{2}{1}=2$
70. A box has 6 m length, 3 m width and 2 m height. Then length of largest straight stick, which can be placed inside the box is
Ans: 7

$$
\sqrt{3^{2}+2^{2}+6^{2}}=\sqrt{49}=7
$$

71. Find the distance between the pair of points $\mathrm{P}(6,8)$ and $\mathrm{Q}(-9,-12)$

Ans: 25
$\mathrm{PQ}=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}=\sqrt{(6+9)^{2}+(8+12)^{2}}=\sqrt{15^{2}+20^{2}}=\sqrt{225+400}=25$
72. Altitude of an equilateral triangle is $8 \sqrt{3}$, then perimeter of the triangle, is

Ans: 48

$$
\begin{aligned}
& a^{2}+h^{2}=4 a^{2} \\
& h^{2}=3 a^{2} \\
& h=\sqrt{3 a}
\end{aligned}
$$

Altitude is $\sqrt{3} a$, then side 2 a. Here altitude is $8 \sqrt{3}$ then side a is $16 . ; \therefore$ Perimeter 16×3 $=48$
73. What is the remainder when $\left(x^{4}+1\right)$ is divided by $(x-2)$?

Ans: 17
$P(a)$ is remainder when $P(x)$ is divided by $x-a$
74. If $(2,1)$ is a solution of the linear equation $2 x+3 y=K$, then the value of K is

Ans: 7

$$
2 x+3 y=K \text { with solution }(2,1) \Rightarrow 4+3=K \Rightarrow K=7
$$

75. In $\triangle \mathrm{ABC}, \angle \mathrm{C}=\angle \mathrm{A}$ and $\mathrm{BC}=15 \mathrm{~cm}$ and $\mathrm{AC}=16 \mathrm{~cm}$, then the length of AB , is

$$
\angle \mathrm{A}=\angle \mathrm{C} \Rightarrow \mathrm{AB}=\mathrm{BC}=15
$$

